

2024 SPRING BULL SALE THURSDAY September 5th 2024 12.30PM

Barwidgee Angus 2819 Hamiton Highway Caramut 3274

Dear Cattle Breeder

WELCOME TO OUR SEPTEMBER 2024 SALE

2024 has been a year to remind us of how challenging farming can be.

The bulls have been fed silage and hay over what has been a very ordinary 6 months for any sort of pasture growth. They have done well, and we are happy with their growth rates.

The focus of our breeding program continues to be an efficient cow herd that can turn off high KG/beef per Ha. This year the benefit of having many positive fat females in the herd has been appreciated. They were in good condition at weaning and the "haystacks on their backs" saved us a lot of feeding.

Many this year's sale bulls have had genomics testing done on them. However, we still collect as many physical records as possible to ensure the data is as accurate as it can be. All our calves are weighed at birth, and 200 days. Bulls are scanned at 400 days for EMA, IMF and fat, SS is also taken then. Weights are taken and submitted regularly and of course our animals are run in large management groups to ensure their performance data is of as high a quality as possible.

All our structural assessments are done by Liam Cardile, our bulls are also assessed for breeding soundness and semen quality independently. Our aim is that your purchase is triple checked before being offered for sale!!

Enjoy looking at the bull videos and if you have any questions over the bulls that may be suitable for your herd to reach your breeding objectives then please give us a call and have a chat.

We will have video available of all the sale bulls on AuctionsPlus and on the website: www. barwidgee.com.au

We are looking forward to welcoming you to our September sale.

Wendy & David Kelly

BULL SALE

Thursday 5th September 2024 at 12:30pm

on the property
Barwidgee Caramut

51 Angus Performance Register Bulls

Inspection time from 9.00am or any other time by arrangement. Light refreshments/lunch provided

 David Kelly
 0427 998 329

 Wendy Kelly
 0428 998 329

 Phone
 03 5599 8329

 Fax
 03 5599 8380

Email barwidgeeangus@gmail.com

Elders VP Mortlake Phone Bill O'Brien Ross Milne

03 5599 2300 0427 992 561 0408 057 558

Sale Conditions

All lots will be governed by the usual sale conditions, available from Elders or on sale day.

A 3% rebate is offered to outside agents nominating their buyers prior to sale and settling within 7 days.

Nominations to be made to the vendor or Elders Mortlake on the day prior to sale.

THE BARWIDGEE HERD

Barwidgee Angus are selected to perform were it counts, to improve profitability. It's not just the first crop of calves where benefits will be seen.

Females by Barwidgee Bulls amplify the benefits of our tough selection procedures.

Along with our three year guarantee on Sale Bulls it all adds up to a better bottom line.

Barwidgee is a 1200 ha property with a 640mm annual rainfall, run as a commercial sheep/beef enterprise.

Stock consists of 1200+ Cattle (approx 600 breeding cows) and 3000 ewes for lamb production.

Stocking rate over the entire property is around 18 dse/ha well above the district average of around 11dse/ha.

Our cattle are run under tough commercial conditions. Our breeding objective is profitability. This does not mean we try to top markets on a per head basis, \$/ha is our objective, and the two rarely go hand in hand.

We select those cattle that can meet a variety of market specifications and so offer the flexibility required in today's volatile markets. Most importantly our cattle are selected to produce a high quality end product at a very low cost/head.

HERD HISTORY

Colin Kelly commenced performance recording at Barwidgee in the early sixties, emphasis has been placed on fertility, calving ease, and growth rates. A.l. has been used extensively over the years to introduce new genetics to the herd, with the emphasis that progeny must be able to perform well under commercial conditions. The current herd of 600 cows represents the elite descendants from a herd that numbered 1300 cows on Barwidgee in the seventies. American sires were used over the herd in 1983 with the aim of lifting growth rates; a careful watch has been kept on birth weights to ensure they do not escalate as growth rates increase. Throughout the history of the herd structure has always been considered important, all cows are assessed annually for legs, feet,etc.

Barwidgee has always been at the forefront of performance recording. 2023 will be the 63rd year of selling performance recorded bulls. No other Angus herd in Australia has such a long term commitment to performance recording. The Barwidgee herd was one of the first to commence fertility testing, scanning for carcass information and also a participant in the Validation Project.

We pride ourselves on being innovative and adopting new technologies and practices that may be of benefit. However we also feel that it is very important that change is not made just for the sake of change, it is very important to take a moderate approach as extremes rarely lead to success.

BREEDING OBJECTIVES

The aim of our beef herd is profitability.

Our cattle are run in large mobs, this not only gives greater accuracy to performance data it also contributes to ease of management and lower labour input.

We select animals that have the traits that lead to increased profitability for the commercial cattle breeder.

FERTILITY/CALVING EASE: This is one of the most important factors affecting profitability in the beef herd, if a cow does not rear an unassisted calf every year of her lifetime (commencing at 2 years of age), this significantly lowers her lifetime production. Cows that produce a wonderful calf every second year have no place in ANY herd. Similarly heifers which require assistance at calving are culled, heifers which require assistance or produce dead calves are unprofitable to the commercial producer.

STRUCTURE/TEMPERAMENT: All the best production figures in the world are useless if you do not have the structure to carry the genetic package around for many years, therefore structure is of considerable importance to us and we select strongly to maintain good structure in the herd. All females are structurally assessed annually. Our cattle are managed in large mobs and minimally handled. Most cattle would only come to the yards 2-3 times a year. Reduced labour inputs mean reduced costs, therefore any cattle which require extra labour input due to a hereditary problem, (eg temperament), are culled

GROWTH RATE/MUSCLING/CARCASS: Must be acceptable to the markets you are trying to target. Cattle must meet market specifications. We select animals that have improved growth rates and muscling without sacrificing maternal traits. Over the last 10 years we have selected very strongly for animals that have acceptable birth weights and high growth, Many of the bulls on offer in this years sale have very moderate to low birth weights and high growth rates, characteristics that are of great benefit to the commercial beef producer, and characteristics that are hard to find to the extent that this years selection of sale bulls offer.

TACE (TRANSTASMAN CATTLE EBV'S CAN BE VALIDLY COMPARED BETWEEN HERDS.

ESTIMATED BREEDING VALUES (EBVs)

An animals breeding value is its genetic merit, half of which will be passed on to its progeny. While we will never know the exact breeding value, for performance traits it is possible to make good estimates. These are called Estimated Breeding Values (EBVs). The EBV is therefore the best estimate of an animal's genetic merit for that trait. EBVs are expressed as the difference between an individual animals genetics and the genetic base to which the animal is compared.

ACCURACY

An accuracy value is presented with every EBV and gives an indication of the amount of information that has been used in the calculation of that EBV. The higher the accuracy, the lower the likelihood of change in the animal's EBV as more information is analysed for that animal or its relatives.

TRAITS

CALVING EASE

EBVs are based on calving ease (CE) scores, birth weights and gestation length information. More positive EBVs are favourable and indicate easier calving.

DIR: Direct calving ease indicates how this animal influences the birth of its progeny.

DTRS: Daughters calving ease indicates how well the animal produces daughters that have easier calving.

BIRTH GESTATION LENGTH EBV (days) is based on AI records. Lower (negative) EBVs indicate easier calving and increased growth after birth.

BIRTH WEIGHT EBV (kg) is based on the measured birth weight of animals, adjusted for dam age. The lower the value the lighter the calf at birth and the lower the likelihood of a difficult birth. This is particularly important when selecting sires for use over heifers.

GROWTH 200-DAY MILK EBV (kg) is an estimate of an animal's milking ability. For sires, this EBV is indicative of their daughter s milking ability as it affects the 200-day weights of their calves.

200-DAY GROWTH EBV (kg) is calculated from the weight of animals taken between 80 and 300 days of age. Values are adjusted to 200 days and for age of dam. This EBV is the best single estimate of an animal's genetic merit for growth to early ages.

400-DAY WEIGHT EBV (kg) is calculated from the weight of progeny taken between 301 and 500 days of age, adjusted to 400 days and for age of dam. This EBV is the best single estimate of an animal's genetic merit for yearling weight.

600-DAY WEIGHT EBV (kg) is calculated from the weight of progeny taken between 501 and 900 days of age, adjusted to 600 days and for age of dam. This EBV is the best single estimate of an animal's genetic merit for growth beyond yearling age.

MATURE COW WEIGHT EBV (kg) is an estimate of the genetic difference in cow weight at 5 years of age. Moderate EBVs are generally more favourable.

FERTILITY

SCROTAL SIZE EBV (cm) is an indicator of male fertility in regards to semen quality and quantity. Higher (positive) EBVs indicate higher fertility. Scrotal size is also positively associated with female fertility.

DAYS TO CALVING EBV (days) is an indicator of genetic differences in female fertility, expressed as the number of days from the start of the joining period until subsequent calving. Lower (negative) EBVs indicate more favourable female fertility.

CARCASE

CARCASE WEIGHT EBV (kg) estimates the genetic difference in carcase weight at a standard age of 750 days.

EYE MUSCLE AREA EBV (cm²) estimates genetic differences in eye muscle area at the 12/13th rib site of a 400kg dressed carcase. More positive EBVs indicate larger eye muscle area and therefore higher retail beef yields.

RIB FAT EBV (mm) estimates the genetic differences in fat depth at the 12/13th rib in a 400kg dressed carcase. More positive EBVs indicate more subcutaneous fat and earlier maturity.

RUMP FAT EBV (mm) estimates the genetic differences in fat depth at the P8 site of a 400kg dressed carcase. More positive EBVs indicate more subcutaneous fat and earlier maturity.

RETAIL BEEF YIELD PERCENT EBV (%) represents total (boned out) meat yield as a percentage of a 400kg dressed carcase. A more positive EBV indicates higher percentage yield for the 400kg carcase weight.

INTRA-MUSCULAR FAT PERCENT EBV (%) is an estimate of the genetic difference in the percentage of intra-muscular fat at the 12/13th rib site in a 400kg carcase. Depending on market targets, larger more positive values are generally more favourable.

NET FEED INTAKE (FEEDLOT FINISHING) EBV (kg per day) is an estimate of genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a feedlot finishing phase. NFI-F EBVs are expressed as kilograms (kg) of feed intake per day.

DOCILITY EBV (%) is an estimate of genetic differences between animals in temperament. Docility EBVs are expressed as differences in the percentage of progeny that will be scored with acceptable temperament (ie. either docile or restless).

CLAW SET EBVs (Claw) are estimates of genetic differences in claw set structure. Claw Set EBVs are calculated from a subjective assessment of claw set on both the front and back feet (shape, spacing and evenness of claws), and are expressed in score units. Lower Claw Set EBVs indicate an animal is expected to produce progeny with, on average, a lower score for claw set (i.e., more even claws with less curl).

FOOT ANGLE EBVs (Angle) are estimates of genetic differences in foot angle. Foot Angle EBVs are calculated from a subjective assessment of foot angle (strength of pastern, depth of heel), and are expressed in score units. Lower Foot Angle EBVs indicate an animal is expected to produce progeny with, on average, a lower score for foot angle (i.e. straighter pastern joint with more heel depth).

LEG ANGLE EBVs (Leg) are estimates of genetic differences in rear leg structure when viewed from the side. Leg Angle EBVs are calculated from a subjective assessment of rear leg structure when viewed from the side (angle at the front of the hock), and are expressed in score units. Lower Leg Angle EBVs indicate an animal is expected to produce progeny with, on average, a lower score for leg angle (i.e. straighter angle through the hock joint).

SELECTION INDEX ABI: ANGUS BREEDING

INDEX (\$) estimates the genetic differences between animals in net profitability per cow joined in a typical commercial self-replacing herd using Angus bulls. This selection index is not specific to a particular production system or market end-point, but identifies animals that will improve overall profitability in the majority of commercial grass and grain finishing beef production systems. The index is particularly suited to commercial producers who sell progeny into different markets, or to seedstock producers supplying bulls to commercial clients who produce for a range of different production systems and market end points.

DOM: DOMESTIC INDEX (\$) estimates the genetic differences between animals in net profitability per cow joined in a commercial self-replacing herd targeting the domestic supermarket trade, with progeny finished using either grass, grass supplemented by grain or grain finishing systems. Steers are assumed to be finished using either grass, grass supplemented by grain or grain (eg. 50 70 days) with steers slaughtered at 490 kg live weight (270 kg carcase weight with 12 mm P8 fat depth) at 16 months of age. Daughters are retained for breeding and therefore maternal traits are of importance. Emphasis has been placed on eating quality and tenderness to favour animals that are suited to MSA requirements.

GRN: HEAVY GRAIN INDEX (\$) estimates the genetic differences between animals in net profitability per cow joined in a commercial self-replacing herd targeting pasture grown steers with a 200 day feedlot finishing period for the grain fed high quality, highly marbled markets. Steers are assumed to be slaughtered at 760 kg live weight (420 kg carcase weight with 30 mm P8 fat depth) at 24 months of age. Daughters are retained for breeding and therefore maternal traits are of importance. There is a significant premium for steers that exhibit superior marbling.

GRS: HEAVY GRASS INDEX (\$) estimates the genetic differences between animals in net profitability per cow joined in a commercial self-replacing herd targeting pasture finished heavy steers. Steers are assumed to be slaughtered at 620 kg live weight (340 kg carcase weight with 12 mm P8 fat depth) at 22 months of age. Daughters are retained for breeding and therefore maternal traits are of importance. Emphasis has been placed on eating quality and tenderness to favour animals that are suited to MSA requirements.

SCROTAL SIZE (SS)

Bulls 18 months or older should have a scrotal circumference of no less than 33cms.

Bulls with larger testicles (over 36cms) can achieve a higher conception rate and can be joined to more cows than bulls with moderate (30-36cms) testicles. High SS bulls are known to breed more fertile females. SS measurements will be available on sale day.

BREEDING SOUNDNESS

The bulls are assessed for both semen quality and physical inspection of the sexual anatomy. The bulls tested negative for persistently infected pestivirus BVDV.

Vaccinations: Two course vaccination for vibriosis and pestivirus. Course of 7 in 1 for clostridial diseases and leptospirosis.

Structure: Full structural assessment. No feet have ever been trimmed.

DELIVERY

Barwidgee bulls will be delivered free within a 200km radius to all purchasers that take advantage of our vendor arranged transport. Other destinations by negotiation.

BULL HANDLING

Barwidgee bulls are trained to be worked by herding dogs (as opposed to heeling dogs). We start this training at birth while they are still on their dams. More intensive training is undertaken at weaning. Our bull mobs are normally moved

with either a person on foot or on a four-wheeler, and a few dogs. The feedback we have had from clients on the effectiveness of this training in making the bulls easy to handle has been excellent.

BARWIDGEE ANGUS BULL GUARANTEE

We aim to get your cows in calf in a fast & short breeding season. If there is a problem with a bull contact us ASAP and we will endeavour to get a satisfactory result for all parties. All guarantees to start in the year of purchase.

This bull guarantee is provided by Barwidgee to protect clients against structural faults. It is not intended to cover accidents or problems arising as a result of the new owners management and husbandry.

THE GUARANTEE

We will guarantee bulls from the date of purchase against loss of fertility due to structural failure of the bull. The guarantee does not cover accidents and events which have occurred under the new owners management and husbandry. For example, corkscrew penis or bad feet which cause severe lameness is covered. Broken penis, prolapsed prepuce, broken legs etc. are not covered. Sound management practices are expected (e.g. fertility testing annually and checks that bulls are working while mating are mandatory). The guarantee covers the purchase value of the bull as stated below. A Veterinary certificate is required to trigger this guarantee. Any associated costs to be bourn by the purchaser.

Purchasers are urged to extend their protection further by insuring their bull(s) for transit and full mortality risks for at least one year, being death by accident and disease and including the peril of loss by accident. This cover will be at the buyers cost via the usual livestock insurance method arranged by the purchaser.

MATINGS

Your bull minus the residual value (independently valued if necessary) will be covered by 3 years pro rata guarantee in the form of credit in the next available Bull Sale. This means that if the bull breaks down:

- ☆ during the first mating, 100% of the credit applies
- ☆ after the first or during the second, 67% of the credit applies
- ☆ after the second or during the third, 33% of the credit applies
- ☆ after the third, none of the credit applies

DISCLAIMER: The Angus GROUP BREEDPLAN Estimated Breeding Values contained in this Sale Catalogue were compiled by the Agricultural Business Research Institute (ABRI) from data supplied by the breeders. Neither Angus Australia, the New Zealand Angus Association nor the ABRI oversee or audit the collection of this data.

BEEF CLASS STRUCTURAL ASSESSMENT SYSTEM

Structural problems in cattle have a substantial effect on both the reproductive and growth performance of a beef herd. It is widely recognised that structural problems in sires have detrimental effects on conception rates, calving patterns and thus profitability. Similarly, females with inadequate structural characteristics are more prone to weaning lighter calves or conceiving later in the breeding season than their more functional counterparts. These structural problems are filtered through the supply chain resulting in reduced income for the producer, feedlot and thus reducing the overall productivity of the Australian Beef Industry.

Over the past decade, use of the Beef Class Structural Assessment System in the seedstock industry has produced a marked improvement in herds which have shown commitment to using the information appropriately. Through these dedicated breeders, there has been a flow on affect of structural improvement through out all sectors of the beef cattle industry.

Liam Cardile of 'BEEFXCEL' structurally assesses many of the leading seedstock herds in Australia. 'BEEFXCEL' is not involved in any genetic marketing or specific breeding advice and therefore has no conflict of interests to influence their stock appraisal. The integrity of the structural data provided by 'BEEFXCEL' is recognised throughout the industry as Liam is a fully <u>INDEPENDENT</u> assessor.

Barwidgee Structural Program

The 2024 BARWIDGEE' Sale Bulls have been independently structurally assessed to maximise the quality of stock on offer. Any animals deemed inadequate have been removed from the sale draft. The BARWIDGEE sale bulls were assessed on July 15th 2024. Scrotal sizes and semen testing were done on August 7th 2024. Updated scrotal sizes will be available on the supplementary sheets.

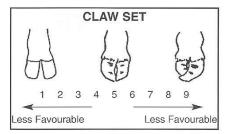
How to use The Beef Class Structural Assessment System

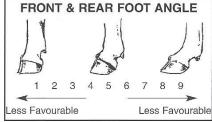
The Beef Class Structural Assessment System uses a 1-9 scoring system;

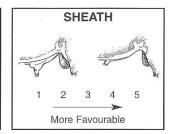
- A score of 5 is ideal. (Note: Temperament Score of 1 is preferable)
- A score of 4 or 6 shows slight variation from ideal, but this includes most animals. An animal scoring 4 or 6 would be acceptable in any breeding program.
- A score of 3 or 7 shows greater variation but would be acceptable in most commercial programs.
 However, seedstock producers should be vigilant and understand that this score indicates greater variation from ideal.
- A score of 2 or 8 are low scoring animals and should be looked closely before purchasing.
- A score of 1 or 9 should not be catalogued and are considered culls.

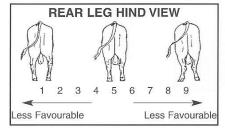
Liam Cardile on 0409 572 570

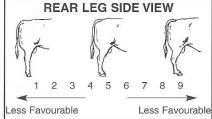
DNA PATERNITY VERIFICATION

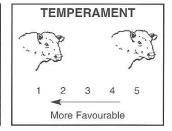

Please note that DNA paternity verification has not been conducted on all of the animals listed for sale in this catalogue. It is a requirement of the Angus Society of Australia that bulls used to sire calves for registration in most of the society's registers are DNA paternity verified. Buyers who intend to use bulls to produce calves to be registered with the Angus society should conduct paternity verification on those bulls before they are used for breeding.


SALE CATALOGUE DISCLAIMER


All reasonable care has been taken by the vendor to ensure that the information provided in this catalogue is correct at the time of publication. However neither the vendor or the selling agents make no other representation about the accuracy, reliability, or completeness of any information provided in this catalogue and do not assume any responsibility for the use or interpretation of the information included in this catalogue. You are encouraged to seek independent verification of any information contained in this catalogue before relying on such information.


TRANSFER OF REGISTRATION AND PRIVACY INFORMATION


All animals in this catalogue are registered with Angus Australia and will be transferred to your ownership after the sale. If you have an Angus herd ID please advise this to us to simplify the process.



				E	BAR	WIC	GE	E 17	7196	6(E	Γ)				;	Societ	y ID:		1	VK	D17	'196
	G /	A R PR	ROPHE	ĒΤ					RI	ENNYL	EA C57	4						\$A	\$[5	\$GN	\$GS
Sire R	RENNYL	EA L	.211(APR)(ET)		D	am B								\$ IN	DEX	\$247	<u> </u>	_	\$305	\$237
	RE	NNYLI	EA HÌ	68					B	ARWID	GEE 10	662				-	entile	9	Ψ2		20	8
TAC	E CA	LVIN	IG E	ASE	GRO	OWTH	And	MATE	RNAL	FER [®]	TILIT	Y		CAR	CASE		CHILIC	FEED		_	Structu	
Trait		DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angl	e claw	/ LEC
EBV	-1.7	2.3	1.1	5.1	48	86	107	103	8	3.8	-9.2	59	10.6	-0.5	-0.9	1.3	3.2	0.63	38	0.72		_
ACC Perc	64% 88		85% 99	96% 74	94% 63	95% 67	94% 74	91% 47	85% 97	94% 8	58% 1	82% 74	83% 11	83% 60	83% 60	78% 10	83% 26	67% 87	92% 4	89% 6		_
					BA	ARW	/IDG	BEE	192	82					,	Societ	y ID:		1	VK	D19	282
		A R PR						_			GEE 10:	211						\$A	\$[)	\$GN	\$GS
Sire B	ALDRII					74	D	am B			15601 GEE 07	401				\$ IN	DEX	\$257	7 \$2°	18 3	\$337	\$23
	ВА	LDKID	JGE 18	ABEL `	109				D/	4KWIDI	3EE 074	401				Perc	entile	6	5		6	7
TAC	E CA	LVIN	IG E	ASE	GRO	OWTH	And	MATE	RNAL	FER'	TILIT	Y		CAR	CASE	=		FEED	TEMP	;	Structu	ıral
Trait	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angl	e claw	/ LE
EBV	-3.1	-2.2	-3.4	3.7	63	98	121	97	14	3.2	-6.6	66	12.7	0	2.3	1.1	1	0.47	12	1	0.6	0.9
ACC Perc	65% 93	76% 82	84% 66	94% 43	93% 8	92% 32	92% 46	87% 57	80% 70	90% 17	56% 12	80% 55	79% 4	79% 49	80% 13	74% 16	80% 81	67% 76	87% 84	84% 58	84% 9	799 19
					BA	RW	/IDG	SEE	202	231					:	Societ	y ID:		,	VK	D20	23
	EF	COM	MAND	O 1366	;				В	ARWID	GEE 14	119						\$A	\$[5	\$GN	\$G
Sire B	ALDRII	DGE :	38 SF	PECIA	۸L		D	am B	ARWID	GEE	16526					\$ IN	DEX	\$286			\$358	\$27
	BA	LDRID	GE IS	ABEL '	Y69				B	ARWID	GEE 14	314					entile	1	γ 2 -	10 (2	ΨΖ 1
TAC	E CA	LVIN	IG E	ASE	GRO	OWTH	And	MATE	RNAL	FER [®]	TILIT	Y		CAR	CASE	1	CHILIC	FEED	TEMP		Structu	ıral
Trait	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angl	e claw	/ LE
EBV	4.4	6.5	-2.1	4	58	108	137	113	19	3	-8.3	80	14.8	1.2	-0.7	1.3	1.6	0.54	8	0.9	0.5	0.9
ACC	61%		83%	93%	91%	89%	90%	85%	77%	86%	49%	78%	76%	77%	77%	70%	78%	64%	86%	79%		
Perc	36	15	83	50	18	11	16	33	36	21	2	18	2	24	56	10	66	82	92	33	3	28
	Adi	NA/III I	ALL 0.4		IOW		NOI	BLE								Societ	y ID:		1 4		LAN	
Cina D				TSBY	G279 PV				M	ATAUR	I REALI	TY 839			,	Societ	y ID:	\$A	\$[)	\$GN	\$G
Sire B	OWMO	NT K	ING	TSBY K306	G279 PV	/		am Ki	M. NOWL	ATAUR A LOV	I REALI	TY 839 49	SV				y ID:	\$A \$245)		\$G
	SOWMC LA	NT K NDFAL	(ING LL FE	ATSBY K306 ARLES	G279 PV PV S D58 SV	/ V	D	am Ki	M. NOWL/ Ki	ATAUR A LOV NOWLA	I REALI VAN K	TY 839 49 N H59 S	SV			\$ IN Perc		\$245	5 \$1 9	94 \$	\$GN \$330 8	\$ G \$
TACI	E CA	NT K NDFAL	(ING LL FEA	K306 ARLES	G279 PV PV S D58 SV	/ ∨ DWTH	And I	am Ki	M. NOWL/ KI	ATAUR A LOV NOWLA	I REALI VAN K LOWA	TY 839 49 N H59 S			CASE	\$ IN	IDEX entile	\$245 10 FEED	5 \$1 9	94 \$	\$GN \$330 8 Structu	\$ G \$ \$23 10 ural
TACI Trait	E CA	NT K NDFAL LVIN	(ING LL FEA NG E	K306 ARLES: ASE	G279 PV PV S D58 SV GRO	/ / OWTH G400	And G600	am Ki MATE MWT	M. NOWL/ KI RNAL MILK	ATAUR A LOW NOWLA FER: SS	I REALI VAN KA LOWA TILIT	TY 839 49 N H59 S	ЕМА	RIB	CASE P8	\$ IN Perc	DEX entile	\$245 10 FEED NFI-F	5 \$19 18 TEMP	94 \$ 3 Angl	\$GN 8 Structu	\$ G 3 10 ural
TACI Trait EBV	E CA DTRS 3	NT K NDFAL LVIN DIR 9.8	ING LL FEA NG E GL -11.3	KTSBY K306 ARLES ASE BW 1.4	G279 PV PV S D58 SV GRO G200 53	/ DWTH G400 97	And G600 129	MATE MWT 118	M. NOWLA KI RNAL MILK 9	ATAUR A LOW NOWLA FER' SS 1.4	I REALIVAN KALOWA TILITY DC -3.8	TY 839 49 N H59 S CWT 70	EMA 13	RIB 1.1	P8	\$ IN Percent	DEX sentile	\$245 10 FEED NFI-F -0.12	5 \$19 18 TEMP DOC 38	94 \$ 3 Angl	\$GN \$330 8 Structure claw 6 0.68	\$G\$ 10 ural LE 1.0
TACI Trait	E CA	NT K NDFAL LVIN	ING LL FEA NG E GL -11.3	K306 ARLES: ASE	G279 PV PV S D58 SV GRO	/ / OWTH G400	And G600	am Ki MATE MWT	M. NOWL/ KI RNAL MILK	ATAUR A LOW NOWLA FER: SS	I REALI VAN KA LOWA TILIT	TY 839 49 N H59 S	ЕМА	RIB	CASE P8	\$ IN Perc	DEX entile	\$245 10 FEED NFI-F	5 \$19 18 TEMP	94 \$ 3 Angl	\$GN \$330 8 Structure claw 6 0.68	\$G\$ \$23 10 ural LE 3 1.0
TACI Trait EBV	DTRS 3 68%	NT K NDFAL LVIN DIR 9.8 -	(ING LL FEA NG E GL -11.3	KTSBY K306 ARLES ASE BW 1.4 97%	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34	And G600 129 96% 28	MATE MWT 118 90%	M.NOWL/KI RNAL MILK 9 84% 94	FER SS 1.4 94% 75	I REALIVAN KALOWA	TY 839 49 N H59 S Y CWT 70 84%	EMA 13 84%	1.1 84%	P8 0.5 84% 35	\$ IN Perce RBY 1.1	IMF 3.7 84% 17	\$245 10 FEED NFI-F -0.12 71%	5 \$19 18 TEMP DOC 38 93% 5	94 \$ 3 Angl 1.06 92% 71	\$GN 8 8 Structu e claw 6 0.68 92%	\$G\$ \$23 10 ural LE 3 1.0
TACI Trait EBV	CADTRS 3 68% 52	NT K NDFAL LVIN DIR 9.8 -	(ING LL FEA NG E GL -11.3 98% 1	K306 ARLES ASE BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34	And G600 129 96% 28	MATE MWT 118 90% 26	M.NOWL/ KI RNAL MILK 9 84% 94	FER'SS 1.4 94% 75	I REALIVAN KALOWA	TY 839 49 N H59 S Y CWT 70 84% 43	EMA 13 84%	1.1 84%	P8 0.5 84% 35	\$ IN Perce RBY 1.1 79% 16	IMF 3.7 84% 17	\$245 10 FEED NFI-F -0.12 71%	5 \$19 18 TEMP DOC 38 93% 5	94 \$ Angl 1.06 92% 71	\$GN 8 Structu e claw 6 0.68 92% 18	\$G: \$23 10 ural LE 3 1.0 89 60
TACI Trait EBV ACC Perc	CADTRS 3 68% 52	DIR 9.8 - 80% 2	(ING LL FEA NG E GL -11.3 98% 1	ASE BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34	And G600 129 96% 28	MATE MWT 118 90% 26	MNOWLAKI RNAL MILK 9 84% 94 P13 RI ENNYL	FER'SS 1.4 94% 75 ENNYLIEA M	I REALIVAN KALOWA TILIT DC -3.8 55% 70 EA G42 600	TY 839 49 N H59 S 7 CWT 70 84% 43	EMA 13 84%	1.1 84%	P8 0.5 84% 35	\$ IN Perce RBY 1.1 79% 16	IMF 3.7 84% 17 y ID:	\$245 10 FEED NFI-F -0.12 71% 17	18 TEMP DOC 38 93% 5	94 9 Angl 1.06 92% 71	\$GN 8 330 8 Structure claw 6 0.68 92% 18 RP1 \$GN	\$G: \$23 10 ural / LE 3 1.0 89 60 37
TACI Trait EBV ACC Perc	CADTRS 3 68% 52	DIR 9.8 - 80% 2	(ING LL FEA NG E GL -11.3 98% 1	ASE BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34	And G600 129 96% 28	MATE MWT 118 90% 26	MNOWLAKI RNAL MILK 9 84% 94 P13 RI ENNYL	FER'SS 1.4 94% 75 ENNYLIEA M	TILITY DC -3.8 55% 70	TY 839 49 N H59 S 7 CWT 70 84% 43	EMA 13 84%	1.1 84%	P8 0.5 84% 35	\$ IN Percent P	IMF 3.7 84% 17 y ID:	\$245 10 FEED NFI-F -0.12 71% 17	18 TEMP DOC 38 93% 5	94 \$ 3 \$ 4 \$ 4 \$ 71 \$ 1.06 \$ 92% \$ 71 \$ 13 \$	\$GN 8 8 Structu e claw 6 0.68 92% 18	\$G: \$23 10 ural / LE 3 1.0 89 60 37
TACI Trait EBV ACC Perc	DTRS 3 68% 52 RERENNYL	DIR 9.8 - 80% 2	GL -11.3 98% 1 EA H7/1000 EA J86	MTSBY K306 ARLES ASE BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	97 96% 34	And 1 G600 129 96% 28	MATE MWT 118 90% 26	NOWL/KI RNAL MILK 9 84% 94 P13	FER'SS 1.4 94% 75 ENNYL	I REALIVAN KALOWAN LOWAL LOWAL TILITY DC -3.8 55% 70 EA G42 600 EA K885	TY 839 49 N H59 S CWT 70 84% 43	EMA 13 84%	RIB 1.1 84% 25	P8 0.5 84% 35	\$ IN Percent RBY 1.1 79% 16 Societ \$ IN	IMF 3.7 84% 17 y ID:	\$245 10 FEED NFI-F -0.12 71% 17	18 TEMP DOC 38 93% 5	92% 71 NO	\$GN 8 \$330 8 Structue claws 0.68 92% 18 RP1 \$GN	\$G\$ \$23 10 ural LEB 1.0 89 60 37 \$G\$
TACI Trait EBV ACC Perc	CARENNYL RE	DIR 9.8 - 80% 2 ENNYLI	GL -11.3 98% 1 11000 EA H7	MTSBY K306 ARLES ASE BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34 ENN	And G600 129 96% 28 YL	MATE MWT 118 90% 26 EA	NOWL/KI RNAL MILK 9 84% 94 P13 RI ENNYL RI	FER MENNYL	I REALIVAN KALOWAN LOWAL LOWAL TILITY DC -3.8 55% 70 EA G42 600 EA K885	TY 839 49 N H59 S CWT 70 84% 43	EMA 13 84% 4	RIB 1.1 84% 25	P8 0.5 84% 35	\$ IN Percent RBY 1.1 79% 16 Societ \$ IN	IMF 3.7 84% 17 y ID:	\$245 10 FEED NFI-F -0.12 71% 17	5 \$19 18 TEMP DOC 38 93% 5	94 \$ Angli 1.066 92% 71 NO	\$GN 8 330 8 Structure claw 6 0.68 92% 18 RP1 \$GN 5 Structure 5 S	\$G\$ \$23 10 ural / LEB 1.0 899 60 60 \$37 \$G\$ \$4 ural
TACI Trait EBV ACC Perc Sire R TACI Trait	DTRS RECA RECA RECA RECA RECA CA CA CA CA CA CA CA CA CA	NT KNDFAL NDFAL LVIN 9.8 - 80% 2 NNNYLI EA M NNYLI LVIN DIR	ING E GL -11.3 98% 1 EA H7 //1000 EA J86 GL GL	KTSBY K306 ARLES: ASE BW 1.4 97% 8 008) 666 ASE BW	G279 PV PV S D58 SV G200 53 96% 41 R	97 96% 34 ENN	And G600 129 28 YL D	MATE MWT 118 90% 26 EA [Dam R	NOWL/KI RNAL MILK 9 84% 94 P13 RI ENNYL RI RNAL	FER MENNYL	I REALIVAN KALOWA TILITY DC -3.8 55% 70 EA G42 600 EA K88: TILITY DC	TY 839 49 N H59 S 7 CWT 70 84% 43	EMA 13 84% 4	RIB 1.1 84% 25 CAR RIB	P8 0.5 84% 35	\$ IN Percent P	IMF IMF 3.7 84% 17 y ID: IDEX centile	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F	18 TEMP DOC 38 93% 5	Angli 1.000 Angli Angli Angli Angli Angli	\$GN 8 Structu e claw 6 0.68 92% 18 RP1 \$GN 5 Structu e claw	\$G. \$23 10 ural / LE 89 66 \$37 \$G. \$25 4
TACI Trait EBV ACC Perc	DTRS 3 68% 52 RERNYL RE DTRS 9.1	DIR 9.8 - 80% 2 ENNYLI	KING ELL FEANG E GL -11.3 98% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KTSBY K306 ARLES BW 1.4 97% 8	G279 PV PV S D58 SV G200 53 96% 41	OWTH G400 97 96% 34 ENN	And G600 129 96% 28 YL	MATE MWT 118 90% 26 EA	NOWL/KI RNAL MILK 9 84% 94 P13 RI ENNYL RI	FER MENNYL	I REALIVAN KALOWA TILITY DC -3.8 55% 70 EA G42 600 EA K885	TY 839 49 N H59 S 7 CWT 70 84% 43	EMA 13 84% 4	RIB 1.1 84% 25	P8 0.5 84% 35	\$ IN Perce RBY 1.1 79% 16 Societ	IMF 3.7 84% 17 y ID:	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4	5 \$19 18 TEMP DOC 38 93% 5	94 \$ Angli 1.066 92% 71 NO	\$GN 8 Structure claw 18 Structure claw 5 Structure claw 6 0.72	\$G. \$23 10 10 10 10 10 10 10 10 10 10 10 10 10
TACI Trait EBV ACC Perc Sire R TACI Trait EBV	DTRS 3 68% 52 RERNYL RE DTRS 9.1	NNT KNNDFALLVIN DIR 9.8 - 80% 2	KING ELL FEANG E GL -11.3 98% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KTSBY K306 ARLES BW 1.4 97% 8 08 0 66 ASE BW 0.3	G279 PV PV S D58 SV G200 53 96% 41 R	G400 97 96% 34 ENN OWTH G400 87	And G600 129 S YL C C C C C C C C C	MATE MWT 118 90% 26 EA F Dam RI MATE MWT 70	NOWL/KI RNAL MILK 9 84% 94 P13 RI ENNYL RI RNAL MILK 22	FER MENNYL	I REALIVAN KALOWA TILITY DC -3.8 55% 70 EA G42 600 EA K88: TILITY DC -5.3	TY 839 49 N H59 S CWT 70 84% 43 0 2 CWT 66	EMA 13 84% 4	RIB 1.1 84% 25 CAR RIB 1.3	P8 0.5 84% 35 RCASE P8 -1.3	\$ IN Percent 1.1 79% 16 Societ \$ IN Percent RBY 1.2 RBY 1.2	IMF 3.7 84% 17 y ID: IMF 4.5	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31	38 93% 5 \$12 \$2 \$2 6 TEMP DOC	Angl 1.060 113 \$ Angl 1.060	\$GN 8 Structure claw 18 Structure claw 5 Structure claw 6 0.72	\$G\$ \$23 10 ural / LE 3 1.0 \$7 \$6 \$4 ural / LE 2 1.1 83
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC	CADTRS 3 68% 52 RERNYLR RE DTRS 9.1 61%	NNT KNNDFALLVIN DIR 9.8 - 80% 2 NNNYLI EA NNNYLI LLVIN DIR 8.6 75% 5	EA H7 // 1000 EA J80 GL -1.9 96% 85	KTSBY K306 ARLES BW 1.4 97% 8 08 0 ASE BW 08 0 0.3 96% 3	G279 PV PV S D58 SV G200 53 96% 41 R	DWTH G400 97 96% 34 ENN DWTH G400 87 95% 65	And G600 129 96% 28 YL	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RI ENNYL RI RNAL MILK 22 83% 16	FER SS 1.4 94% 75 ENNYL EA MENNYL SS 2.2 93% 47	TILIT DC -3.8 55% 70 EA G42 600 EA K88: TILIT DC -5.3 51% 34	TY 839 49 N H59 S 7 CWT 70 84% 43 0 2 Y CWT 66 83% 56	EMA 13 84% 4 11.9 82% 6	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Percent 1.1 79% 16 Societ \$ IN Percent RBY 1.2 76%	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68%	5 \$19 18 TEMP DOC 38 93% 5 \$12 \$2 6 TEMP DOC 31 93%	Angl 1.06 92% 71 NO 0 13 4.3 Angl 1.06 88% 71	\$GN 8 Structure claw 18 Structure Claw 5 Structure claw 6 0.72 87%	\$G. \$23 10 ural / LEB 1.0 89 60 \$G. \$25 4 ural / LEB 89 89 89 89 89 89 89 89 89 89 89 89 89
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CADTRS 3 68% 52 RERNYL RE DTRS 9.1 61% 3	NNT K NDFAL LVIN 9.8 - 80% 2 NNNYLI EA M NNYLI LVIN DIR 8.6 75% 5	EA H7 // 1000 EA J86 GL -1.9 98% 1 UF	**************************************	G279 PV PV S D58 SV G200 53 96% 41 RI GRC G200 43 95% 84	DWTH G400 97 96% 34 ENN DWTH G400 87 95% 65 KE	And G600 129 S S S S S S S S S	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RIENNYL RI RNAL MILK 22 83% 16	FER SS 1.4 94% 75 ENNYL EA MENNYL SS 2.2 93% 47 BACARABA	TILIT DC -3.8 55% 70 EA G42 600 EA K88: TILIT DC -5.3 51% 34 CK (R DOCK	TY 839 49 N H59 S CWT 70 84% 43 0 CWT 66 83% 56	EMA 13 84% 4 11.9 82% 6	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Percent Societ Societ SIN Percent Security Security	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68%	5 \$19 18 TEMP DOC 38 93% 5 \$12 \$2 6 TEMP DOC 31 93%	Angl 1.06 92% 71 NO 0 13 \$ 4 Angl 1.06 88% 71	\$GN 8 330 8 Structure claw 18 FP1 SGN 5 Structure claw 6 0.72 87% 25	\$G. \$23 10 10 10 10 10 10 10 10 10 10 10 10 10
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CA DTRS 3 68% 52 RENNYL RE DTRS 9.1 61% 3	NNT K NDFAL LVIN 9.8 - 80% 2 NNYLI EA M NNYLI LVIN DIR 8.6 75% 5	ING E GL -11.3 98% 1 EA H7 M1000 EA J86 GL -1.9 96% 85 IUF	**************************************	G279 PV PV S D58 SV G200 53 96% 41 RI GRO G200 43 95% 84	DWTH G400 97 96% 34 ENN DWTH G400 87 95% 65 KE	And G600 129 S S S S S S S S S	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RIENNYL RI RNAL MILK 22 83% 16 ERE	FER' SS 1.4 94% 75 FENNYLL EA M ENNYLL FER' SS 2.2 93% 47 BAC ARABA DUKE	TILITY DC -3.8 55% 70 EA G42 600 EA K88: TILITY DC -5.3 51% 34 CR DOCK	TY 839 49 N H59 S 7 CWT 70 84% 43 0 CWT 66 83% 56	EMA 13 84% 4 11.9 82% 6	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Perce RBY 1.1 79% 16 Societ \$ IN Perce E RBY 1.2 76% 13 Societ Societ	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61	18 TEMP DOC 38 93% 5	Angl 1.06 92% 71 NO Angl 1.06 88% 71	\$GN 8 330 8 Structure claw 18 RP1 SGN 5 Structure claw 25 SWQ	\$G. \$23 10 ural / LE 3 1.0 89 60 \$37 \$G. \$25 4 ural / LE 83 89 80 10 10 10 10 10 10 10 10 10 10 10 10 10
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CA DTRS 3 68% 52 RENNYL RE DTRS 9.1 61% 3	NNT K NDFAL LVIN 9.8 - 80% 2 NNYLI EA M NNYLI LVIN DIR 8.6 75% 5	ING E GL -11.3 98% 1 EA H7 M1000 EA J86 GL -1.9 96% 85 IUF	ASE BW 1.4 97% 8 008 0.3 96% 3 RDE	G279 PV PV S D58 SV G200 53 96% 41 RI GRO G200 43 95% 84	DWTH G400 97 96% 34 ENN DWTH G400 87 95% 65 KE	And G600 129 S S S S S S S S S	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RIENNYL RI RNAL MILK 22 83% 16 ERE	FER' SS 1.4 94% 75 FENNYLL EA M ENNYLL FER' SS 2.2 93% 47 BAC ARABA DUKE	TILIT DC -3.8 55% 70 EA G42 600 EA K88: TILIT DC -5.3 51% 34 CK (R DOCK	TY 839 49 N H59 S 7 CWT 70 84% 43 0 CWT 66 83% 56	EMA 13 84% 4 11.9 82% 6	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Perce RBY 1.1 79% 16 Societ RBY 1.2 76% 13 Societ \$ IN	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61	18 TEMP DOC 38 93% 5	Angl 1.06 92% 71 NO 0 13 \$ \$ Angl 1.06 88% 71	\$GN 8 Structure claw 18 Structure claw 5 Structure claw 5 Structure claw 25 SWQ \$GN \$WQ	\$G. \$23 10
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CADTRS 3 68% 52 RERENNYL RE DTRS 9.1 61% 3 GAWSOILA	NNT K NDFAL LVIN 9.8 - 80% 2 NNYLI EA M NNYLI LVIN DIR 8.6 75% 5	EA H7 // 1000 EA J80 GL -1.9 96% 85 DMEN OME	KTSBY K306 ARLES BW 1.4 97% 8 08 0 08 0 08 0 08 0 TUM NTOU	G279 PV PV S D58 SV G200 53 96% 41 RI GRC G200 43 95% 84 EDU	DWTH G400 97 96% 34 ENN OWTH G400 87 95% 65 KE	And G600 129 96% 28 YL	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RI ENNYL RI RNAL MILK 22 83% 16 ERE	FER SS 1.4 94% 75 ENNYL EA MENNYL SS 2.2 93% 47 BACUKE URDED	TILITY DC -3.8 55% 70 EA G42 600 EA K88: TILITY DC -5.3 51% 34 CK (CR DOCK BARUDUKE K3	TY 839 49 N H59 S 7 CWT 70 84% 43 0 CWT 66 83% 56 Q01 KLANDS INAH I	EMA 13 84% 4 11.9 82% 6	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Perces RBY 1.1 79% 16 Societ RBY 1.2 76% 13 Societ	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8 y ID:	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61	5 \$19 18 TEMP DOC 38 93% 5 \$E 2 \$2.6 6 TEMP DOC 31 93% 14	Angl 1.06 92% 71 NO 1.3 4.3 4.3 4.3 6.9 71 CS	\$GN 8 330 8 Structure claw 18 RP1 SGN 5 Structure claw 25 SWQ SGN 309 309	\$G. \$23 10 ural / LE 8 1.0 89 60 \$37 \$G. \$25 4 ural / LE 83 80 80 80 80 \$21 24
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CADTRS 3 68% 52 RERENNYL RE DTRS 9.1 61% 3 GAWSOILA	DIT KNOTAL LVIN 9.8 - 2 80% 2 KNOTAL NOTAL BAR MC A R MC NS MM WSON	ING E GL -11.3 98% 1 EA H7 M1000 EA J80 GL -1.9 96% 85 IUF	KTSBY K306 ARLES BW 1.4 97% 8 08 0 08 0 08 0 08 0 TUM NTOU	G279 PV PV S D58 SV G200 53 96% 41 RI GRC G200 43 95% 84 EDU	DWTH G400 97 96% 34 ENN G400 87 95% 65 KE	And G600 129 28 YL D C C C C C C C C C	MATE MWT	RNAL MILK 9 84% 94 P13 RNAL MILK 22 83% 16 CHARLE CHARLE MILK 22 83% 16 RNAL	FER SS 1.4 94% 75 ENNYL EA MENNYL SS 2.2 93% 47 BACUKE URDED	TILITY DC -3.8 55% 70 EA G42 600 EA K88: TILITY DC -5.3 51% 34 CK (CR DOCK BARUDUKE K3	TY 839 49 N H59 S 7 CWT 70 84% 43 0 CWT 66 83% 56 Q01 KLANDS INAH I	EMA 13 84% 4 11.9 82% 6 1 S D62(A N026	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 CASE P8 -1.3 82% 67	\$ IN Perces RBY 1.1 79% 16 Societ RBY 1.2 76% 13 Societ	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8 y ID:	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61 \$4 \$221 29 FEED	5 \$19 18 TEMP DOC 38 93% 5 \$E 2 \$2' 6 TEMP DOC 31 93% 14 \$E 1 \$10 48 TEMP	Angl 1.06 92% 71 NO D Angl 1.06 88% 71 CS	\$GN 8 330 8 Structure claw 18 Structure claw 5 Structure claw 25 SWQ 18 SWQ SWQ 18 SW	\$G. \$23 10 ural / LE 3 1.(
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CA	NNT K NDFAL NDFAL NNT L NNYLI EA M NNYLI LEA M NNYLI A R MC NS M WSON	ING E GL -11.3 98% 1 EA H7 M1000 EA J80 GL -1.9 96% 85 IUF	KTSBY K306 ARLES BW 1.4 97% 8 1.6 66 ASE BW 0.3 96% 3 RDE TUM NTOU ASE	G279 PV PV S D58 SV G200 53 96% 41 RI GRO G200 43 95% 84 EDU	DWTH G400 97 96% 34 ENN G400 87 95% 65 KE	And G600 129 28 YL D C C C C C C C C C	MATE MWT 118 90% 26 EA F Dam R MATE MWT 70 91% 90 ART	RNAL MILK 9 84% 94 P13 RNAL MILK 22 83% 16 CHARLE CHARLE MILK 22 83% 16 RNAL	FER SS 1.4 94% 75 FER MENNYL SS 2.2 93% 47 BACUKE URDED FER STEEL	TILIT DC -3.8 55% 70 EA G42 600 EA K88: TILIT DC -5.3 51% 34 CK (CR DOCH BARU	TY 839 49 N H59 S CWT 70 84% 43 0 2 CWT 66 83% 56 QO1 KLANDS INAH I	EMA 13 84% 4 11.9 82% 6 1 S D62(A N026	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Perces RBY 1.1 79% 16 Societ \$ IN Perces RBY 1.2 76% 13 Societ \$ IN Perces	IMF 3.7 84% 17 y ID: IMF 4.5 83% 8 y ID:	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61 \$4 \$221 29 FEED	5 \$19 18 TEMP DOC 38 93% 5 \$E 2 \$2' 6 TEMP DOC 31 93% 14 \$E 1 \$10 48 TEMP	Angl 1.06 92% 71 NO D Angl 1.06 88% 71 CS	\$GN 8 Structu e claw 6 0.68 92% 18 RP1 \$GN 5 Structu e claw 6 0.72 87% 25 \$WQ \$SFW 6 \$309 18 Structu e claw	\$G: \$23 10 ural / LE 3 1.0 89 60 \$37 \$G: \$25 4 ural / LE 2 1.1 83 85 80 1 80 1 80 1 80 1 80 1 80 1 80 1 8
TACI Trait EBV ACC Perc Sire R TACI Trait EBV ACC Perc	CADTRS 3 68% 52 REENNYL RE DTRS 9.1 61% 3 GAWSOI LA DTRS -1	NNT K NDFAIL NNT K NNT N	EA H7 // 1000 EA J80 OME SS AFF	KTSBY K306 ARLES BW 1.4 97% 8 08 0 66 BW 0.3 96% 3 RDE TUM NTOU ASE BW	G279 PV PV S D58 SV G200 53 96% 41 RI GRO G200 43 95% 84 EDU JS M51 229 GRO G200	DWTH G400 97 96% 34 ENN G400 87 95% 65 KE 8	And G600 129 S S S S S S S S S	MATE MWT 118 90% 26 EA	RNAL MILK 9 84% 94 P13 RIENNYL RI RNAL MILK 22 83% 16 C, URDEI MI	FER SS 1.4 94% 75 77 ENNYL EA MENNYL SS 2.2 93% 47 BACUKE URDED FER SS	TILIT DC -3.8 55% 70 EA G42 600 EA K88: TILIT DC -5.3 51% 34 CK (CR DOCK BARUDUKE K:	TY 839 49 N H59 S CWT 70 84% 43 0 2 Y CWT 66 83% 56 Q01 KLANDS INAH N 304	EMA 13 84% 4 11.9 82% 6 1 S D62(A N026	RIB 1.1 84% 25 CAR RIB 1.3 82% 22	P8 0.5 84% 35 8CASE P8 -1.3 82% 67	\$ IN Perce RBY 1.1 79% 16 Societ RBY 1.2 76% 13 Societ \$ IN Perce ERBY 1.2 RBY 1.3 Societ RBY RBY RBY	IMF IMF 3.7 84% 17 y ID: IMF 4.5 83% 8 y ID: IMF	\$245 10 FEED NFI-F -0.12 71% 17 \$A \$262 4 FEED NFI-F 0.31 68% 61 \$A \$221 29 FEED NFI-F	5 \$19 18 TEMP DOC 38 93% 5 \$E 2 \$2' 6 TEMP DOC 31 93% 14 \$E 1 \$16 48 TEMP DOC	Angl 1.0669 \$3 Angl 71 Angl 1.0669 \$3 Angl	\$GN 8 8 8 8 8 8 9 9 9 18 8 8 9 18 8 18 1	\$G\$\$ \$23 10 ural / LEE 3 1.0 899960 87 \$G\$\$ \$25 4 ural / LEE 2 1.1 \$89 89 \$21 24 ural / LEE 1.0

TC	MANUA OADADA OE44 OV	.	VTNOCAA
IE	MANIA QARARA Q514 SV	Society ID:	VTMQ514
G A R PROPHET	TE MANIA JOE J963		\$A \$D \$GN \$GS
Sire TE MANIA KIRBY K138 TE MANIA BEEAC H17	Dam TE MANIA BARUNAH L537 TE MANIA BARUNAH H219	\$ INDEX	\$264 \$221 \$348 \$251
		Percentile	4 4 4 4 4 4
TACE CALVING EASE	GROWTH And MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8		
Trait DTRS DIR GL BW EBV 6.9 -0.2 -6.9 3.8	G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 56 90 112 84 22 3.3 -9.2 71 6.4 -1.8 -1.5	RBY IMF 0 4.7	NFI-F DOC Angle claw LEG 0.83 35 0.92 0.66 1.04
ACC 63% 77% 98% 98% Perc 13 71 16 45	97% 96% 96% 88% 79% 96% 56% 82% 84% 83% 83% 27 56 65 77 17 15 1 39 49 85 70	78% 84% 76 6	71% 98% 93% 93% 90% 95 8 37 16 53
T	E MANIA QLLISTO Q888	Society ID:	VTMQ888
G A R PROPHET	TE MANIA GARTH G67		SA SD SGN SGS
Sire TE MANIA KIRBY K138	Dam TE MANIA LOWAN L534	\$ INDEX	\$248 \$200 \$331 \$243
TE MANIA BEEAC H17	7 TE MANIA LOWAN H178	Percentile	9 13 8 6
TACE CALVING EASE	GROWTH And MATERNAL FERTILITY CARCASE		FEED TEMP Structural
Trait DTRS DIR GL BW	G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8	RBY IMF	NFI-F DOC Angle claw LEG
EBV 5.3 -2.4 -3.8 6.3	53 99 130 113 16 3.5 -7.8 70 7.9 0.8 0.4	-0.4 5.9	1.14 32 0.98 0.8 1.1
ACC 64% 72% 93% 95% Perc 26 83 60 91	93% 93% 87% 80% 89% 58% 82% 82% 82% 82% 82% 82% 39 30 27 33 60 12 4 44 32 31 37	77% 83% 89 2	71% 88% 85% 85% 81% 99 12 53 41 72
	BARWIDGEE 20193	Society ID:	VKD20193
H P C A INTENSITY	EF COMPLEMENT 8088		\$A \$D \$GN \$GS
Sire RENNYLEA L519 RENNYLEA H414	Dam BARWIDGEE 17183 BARWIDGEE 12154	\$ INDEX	\$273 \$227 \$349 \$255
	<u></u>	Percentile	2 2 4 3
TACE CALVING EASE	GROWTH And MATERNAL FERTILITY CARCASE		FEED TEMP Structural
Trait DTRS DIR GL BW	G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8		NFI-F DOC Angle claw LEG
EBV 4 0.6 -4.7 4.9 ACC 64% 73% 83% 88%	59 101 134 98 20 -0.9 -6.8 93 11.6 -2.4 -2.1 87% 86% 87% 84% 77% 84% 55% 77% 75% 76% 76%	1.5 1.7 70% 77%	-0.02 29 0.82 0.28 0.98 66% 78% 79% 79% 73%
	15 23 21 56 30 99 10 4 7 92 79		
Perc 40 65 45 70	15 25 21 30 30 99 10 4 7 92 79	6 63	25 18 17 1 34
Perc 40 65 45 70		Society ID:	
ALLOURA GET CRAC	BARWIDGEE 20543 KING G10 BARWIDGEE 14145		VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339	BARWIDGEE 20543		VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270	\$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE CALVING EASE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH And MATERNAL FERTILITY CARCASE	\$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE CALVING EASE Trait DTRS DIR GL BW	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8	\$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE CALVING EASE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH And MATERNAL FERTILITY CARCASE	\$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78%	VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG -0.17 21 1.1 0.94 1.1 64% 77% 76% 76% 67% 14 46 79 70 72 VKD20257
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 17257	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID:	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG -0.17 21 1.1 0.94 1.1 64% 77% 76% 76% 67% 14 46 79 70 72 VKD20257 \$A \$D \$GN \$GS
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG -0.17 21 1.1 0.94 1.1 64% 77% 76% 76% 67% 14 46 79 70 72 VKD20257
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 17257	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG -0.17 21 1.1 0.94 1.1 64% 77% 76% 76% 67% 14 46 79 70 72 VKD20257 \$A \$D \$GN \$GS \$275 \$236 \$354 \$262
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile	VKD20543 \$A \$D \$GN \$GS \$263 \$203 \$353 \$255 4 11 3 3 FEED TEMP Structural NFI-F DOC Angle claw LEG -0.17 21 1.1 0.94 1.1 64% 77% 76% 76% 67% 72 VKD20257 \$A \$D \$GN \$GS \$275 \$236 \$354 \$262 2 1 3 2
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 17257 BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6	SA
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile	SA
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 3 91 3 60 61	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6 72% 79%	VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 3 91 3 60 61	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile E RBY IMF 1.3 3.6 72% 79% 10 19	SA
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 3 91 3 60 61 BARWIDGEE 20519	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6 72% 79% 10 19 Society ID:	SA
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 78% 46 51 67 73 59 39 3 91 3 60 61 BARWIDGEE 20519 RENNYLEA L211(APR)(ET)	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile E RBY IMF 1.3 3.6 72% 79% 10 19	SA
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY GARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 17257 BARWIDGEE 15210 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY GARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 3 91 3 60 61 BARWIDGEE 20519 RENNYLEA L211(APR)(ET) Dam BARWIDGEE 17503	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6 72% 79% 10 19 Society ID: \$ INDEX Percentile E	VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY GARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 3 3 91 3 60 61 BARWIDGEE 17503 BARWIDGEE 17503 BARWIDGEE 14348	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6 72% 79% 10 19 Society ID: \$ INDEX Percentile E	VKD20543
ALLOURA GET CRAC Sire BARWIDGEE 18339 BARWIDGEE 16548 TACE	BARWIDGEE 20543 KING G10 BARWIDGEE 14145 Dam BARWIDGEE 18530 BARWIDGEE 14270 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 48 95 131 92 32 0.1 -7.6 85 10.4 0.8 0.8 87% 87% 87% 84% 76% 85% 49% 77% 75% 76% 77% 65 39 26 66 1 97 5 10 12 31 30 BARWIDGEE 20257 BARWIDGEE 15310 Dam BARWIDGEE 17257 BARWIDGEE 15225 GROWTH AND MATERNAL FERTILITY CARCASE G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 52 91 111 87 16 2.4 -8.1 50 13.5 -0.5 -1 90% 89% 89% 85% 78% 87% 55% 79% 77% 77% 78% 46 51 67 73 59 39 39 3 3 91 3 60 61 BARWIDGEE 20519 RENNYLEA L211(APR)(ET) Dam BARWIDGEE 17503 BARWIDGEE 17503 BARWIDGEE 14348 GROWTH AND MATERNAL FERTILITY CARCASE	\$ INDEX Percentile RBY IMF -0.2 5.3 69% 78% 84 3 Society ID: \$ INDEX Percentile RBY IMF 1.3 3.6 72% 79% 10 19 Society ID: \$ INDEX Percentile E	SA

TransTasman Angus Cattle Evaluation - August 2024 Reference Tables

										ш	REED	AVE	RAGE	AGE EBVs										
	Calvin	Calving Ease	Birth	th			Growth			Ferti	lity			Card	Carcase			Other	er	o)	tructure	Ø.	Selectio	election Indexes
	CEDir	CEDir CEDtrs	GL	BW	200	400	GL BW 200 400 600	MCW	Milk	SS	DTC	CWT	EMA	RIB	RIB P8	RBY	IMF	RBY IMF NFI-F DOC Claw Angle Leg	DOC	Claw	Angle		\$A	\$A-L
Brd Avg	+1.8	+2.7	4.4	+4.0	+4.0 +51	+92	+119	+102	+17	+2.2	4.6	19+	+6.4	+0.0+	-0.3 +0.5		+2.3	+0.22	+21	+0.84	+0.97 +1	+1.02	+200	+344

^{*} Breed average represents the average EBV of all 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the August 2024 TransTasman Angus Cattle Evaluation.

	S		Profitability	4	4	7	9	8	0	က	7	_	2	6	2	9	6	2	8	4	2	9	0	_	Profitability
	n Indexe	\$A-L	Greater	+454	+424	+407	+396	+388	+38	+37	+36	+36	+35	+34	+34	+33	+32	+32	+31	+30	+26	+276	+25	+201	Lower
	Selection Indexes	\$A	Greater Profitability	+278	+257	+245	+237	+231	+225	+220	+215	+211	+207	+203	+198	+194	+189	+184	+178	+171	+163	+152	+136	+106	Lower Profitability
	re	Leg	Lower	+0.72	+0.82	+0.86	+0.90	+0.92	+0.94	+0.96	+0.98	+1.00	+1.00	+1.02	+1.04	+1.06	+1.06	+1.08	+1.10	+1.12	+1.16	+1.18	+1.24	+1.32	Higher Score
	Structure	Angle	Power Score	+0.60	+0.70	+0.76	+0.80	+0.84	+0.86	+0.88	+0.90	+0.92	+0.94	+0.96	+0.98	+1.00	+1.02	+1.04	+1.08	+1.10	+1.14	+1.18	+1.24	+1.38	Higher Score
		Claw	Pcore Score	+0.42	+0.54	+0.60	+0.64	+0.68	+0.72	+0.74	+0.76	+0.78	+0.82	+0.84	+0.86	+0.88	+0.90	+0.94	+0.96	+1.00	40.1+	+1.08	+1.16	+1.30	Higher Score
	Other	DOC	More Docile	+45	+37	+33	+30	+28	+27	+25	+24	+23	+21	+20	+19	+18	+17	+16	+14	+13	+11	6+	42	7	Less
	ð	NFI-F	Greater Feed Ficiency	-0.65	-0.38	-0.24	-0.15	-0.08	-0.02	+0.03	+0.08	+0.13	+0.17	+0.21	+0.26	+0.30	+0.35	+0.40	+0.46	+0.52	+0.59	+0.69	+0.85	+1.14	Lower Feed Efficiency
		IMF	More	+6.1	44.9	+4.3	+3.9	+3.6	+3.3	+3.0	+2.8	+2.6	+2.4	+2.2	+2.0	+1.9	+1.7	+1.5	+1.3	+1.1	+0.8	+0.5	+0.0	-0.9	IWE Fess
		RBY	Higher Yield	+2.1	+1.6	+1.3	+1.2	+1.0	+0.9	+0.8	+0.7	+0.7	+0.6	+0.5	+0.4	+0.3	+0.2	+0.2	+0.1	-0.1	-0.2	6 .0-	-0.7	-1.2	Lower Yield
삨	Carcase	P8	More Fat	+5.5	+3.6	+2.6	+2.0	+1.6	+1.2	+0.8	+0.5	+0.2	6 .1	-0.3	9.0-	6.0-	-1.2	-1.5	-1.8	-2.2	-2.6	-3.2	4.2	-6.0	Less Fat
S TAB	Car	RIB	More Fat	+4.5	+3.1	+2.3	+1.8	4.1+	+1.1	+0.9	9.0+	+0.4	+0.2	+0.0	-0.2	-0.5	-0.7	-0.9	-1.2	-1.4	-1.8	-2.2	-2.9	-4.3	Less Fat
3AND		EMA	Larger EMA	+14.9	+12.2	+10.8	6.6+	+9.2	+8.6	+8.1	+7.6	+7.2	+6.7	+6.3	+5.9	+5.5	+5.1	+4.7	+4.2	+3.7	+3.0	+2.2	+1.0	-1.6	Smaller EMA
PERCENTILE BANDS TABLE		CWT	Heavier Carcase TigieW	+101	06+	+85	+81	+79	+76	+74	+73	+71	69+	+67	99+	+64	+62	+61	+59	+56	+54	+20	+45	+34	Lighter Carcase Meight
ERCE	Fertility	DTC	Shorter Time to Calving	6.8	-7.5	-6.8	-6.4	-6.0	-5.8	-5.5	-5.3	-5.1	4.8	4.6	4.4	4.2	4.0	-3.8	-3.6	-3.3	-2.9	-2.5	-1.7	-0.2	Longer Time to Calving
Ь	Fe	SS	Larger Scrotal Size	+5.1	+4.1	+3.6	+3.3	+3.1	+2.9	+2.7	+2.6	+2.4	+2.3	+2.1	+2.0	+1.9	+1.7	+1.6	+1.4	+1.3	+1.1	+0.8	+0.4	-0.5	Weight Smaller Scrotal Size
		Milk	Heavier Five Svid Weight	+29			_	_	+20	+19	+19	+18	+18		+16		+15		+14	+13	+12	+	6+	42	Lighter Evid
	-	MCW	Heavier Mature Weight	+166	+145	+135	+128	+123	+118	+114	+111	+108	+104	+101	+98	+95	+92	+89	+85		+76		09+	+40	Lighter Mature Weight
	Growth	009	Heavier Live Weight	+164	+150	+142	-	+134	-	+128	+126	+123	+121	+119	+116	+114	+112	+109	+107	+104	+100	+95	+88	+73	Lighter Live Weight
		400	Heavier Live Weight	+124	+114	+109	+105	+103	+101	66+	+97	+95	+93	+92	06+	+89	+87	+85	+83	+81	+78	+75	+70	+59	Weight Lighter Live Weight
		200	Heavier Five Svid Weight	+71	+65	+61	+59	+58	+26	+55	+54	+53	+52	+51	+20	+49	+48	+47	+45	+44	+42	+40	+37	+30	Lighter 9viJ
	Birth	BW	Lenghter Lighter Birth Weight	4.0-	+1.0	+1.7	+2.1	+2.5	+2.8	+3.1	+3.3	+3.5	+3.8	+4.0	+4.2	4.4.4	+4.6	44.9	+5.1	+5.4	+5.8	+6.2	6.9+	+8.4	Heavier Birth Weight
		s GL	Shorter Gestation Length	-10.4	9.8	-7.6	-7.0	-6.5	-6.1	-5.7	-5.3	-5.0	4.7	4 4.	4.	-3.8	-3.5	-3.1	-2.8	-2.4	-1.9	-1.2	-0.2	+1.8	Length Length Length Length
	Calving Ease	r CEDtrs	Less Calving Difficulty	+9.9	+8.3	+7.3	+6.6	+6.0	+5.4	+4.9	+4.5	+4.0	+3.6	+3.1	+2.7	+2.2	+1.7	+1.1	+0.5	-0.3	-1.2	-2.4	4.	-8.7	More Calving Difficulty
		CEDir	Less Calving Difficulty	+10.1	+8.4	+7.3	+6.4	+5.7	+5.1	+4.5	+4.0	+3.5	+2.9	+2.4	+1.9	+1.3	+0.6	-0.1	-0.8	-1.8	-2.9	4.4	-7.0	-12.5	More Calving Difficulty
	1	% Band		1%	2%	10%	15%	20%	722%	30%	35%	40%	45%	%09	%29	%09	%59	%02	75%	%08	85%	%06	%26	%66	

* The percentile bands represent the distribution of EBVs across the 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the August 2024 TransTasman Angus Cattle Evaluation.

.ot Society ID: VKD 22 46 Gene Status **RENNYLEA L519 BARWIDGEE 18339** AM NH CA DD **Sire** BARWIDGEE 20543 Dam BARWIDGEE 19215 BARWIDGEF 18530 **BARWIDGEE 16188** FU FU FU FU \$GN \$GS SHEATH \$A \$D Birth Wt Born ¬γ 福 \$269 \$218 \$257 \$347 \$ INDEX 5/09/2022 6 6 3 39 38 kg 6 6 5 5 1 Percentile 3 **CALVING EASE GROWTH And MATERNAL CARCASE** FEED TEMP Structural FERTILITY TACE G200 G400 G600 MWT MILK TRAIT DTRS DIR GL RW SS DC CWT EMA **RIB** P8 **RBY** IMF NFI-F DOC Angle claw LEG **FBV** 7.1 2 0.76 0.8 -1.5 5 56 108 146 112 23 0.7 -5.7 85 15.1 0.1 0.9 1.1 -0.1851 0.8 0.82 65% ACC 55% 82% 81% 82% 80% 81% 78% 73% 79% 43% 69% 69% 69% 70% 60% 73% 61% 75% 63% 63% 60% Perc 11 64 88 72 28 12 8 33 11 91 26 10 1 46 29 16 55 13 1 14 32 5 461 is an outstanding young bull, thick and docile with excellent structure. Top 1% EMA, Top 10% 400 & 600D growth. Top 5% all \$ Indexes. A top bull. Used as a yearling. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics VKD 22 129 2 Society ID: _ot **Gene Status** TE MANIA KIRBY K138 **BARWIDGEE 14145** AM NH CA DD Dam BARWIDGEE 18418 Sire TE MANIA QARARA Q514 SV TE MANIA BARUNAH L537 **BARWIDGEE 14152** FU FU FU FU \$D \$GN \$GS SHEATH Born Birth Wt TEM \$ INDEX \$270 \$228 \$347 \$257 12/08/2022 6 5 6 6 5 4 1 40 32 kg Percentile 4 3 FEED TEMP **CALVING EASE GROWTH And MATERNAL** FERTILITY **CARCASE** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 10.8 7.8 -8.6 1.9 48 83 103 70 0.1 0.2 0.96 0.74 1.06 65 21 2.5 -8.7 10.1 0.3 3.3 0.5615 ACC 55% 66% 83% 82% 83% 81% 82% 78% 74% 79% 45% 70% 70% 70% 71% 62% 74% 62% 78% 68% 67% 66% 5 12 75 36 2 43 46 40 24 47 Perc 8 62 81 93 20 14 59 83 72 28 60 Outstanding Q514 son. Top 2% \$A, \$D,\$Gs, Top 4% %GN. Super low MCWT with positive fat. Used as a yearling. A top bull. Ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Lot	3																Socie	ety ID:	V	KD	22	433
Ger	ne Sta	atus	Ī					RE	NNYLEA	A L519							BARW	VIDGEE	15168			
AM N	IH C	A D	D			S	ire BA	RWID	GEE 2	0257					Dan	n BAR	WIDGE	E 1742	21			
FU F	U F	U F	U					BA	RWIDGE	EE 1725	57						BARW	VIDGEE	15129			
	Born		Birth '	\A/4		5 7	}	П	5	A	n s	SHEATH	3)	.(\$A	\$	D	\$GN	\$GS
	oun		וווווו	VVL		FO)H F2	-∠AH	8~	Y	Y	20	ي TEI	, ,	لا	\$ II	NDEX	\$27	2 \$2	26	345	\$266
4/09	9/2022)	38 k	g		6	6 6	6	5	6	6	5	2	4	12	Per	centile	2	;	3	5	2
TACE	CAI	LVIN	G EA	SE	GRO	WTH	And N	/IATE	RNAL	FER	ΓΙLΙΤ	Υ		CAR	CASE			FEED	TEMP	5	Structu	ral
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	1.1	-2.2	-5.4	3.8	51	92	121	72	20	4.2	-9.8	55	10.7	3.8	2.5	0.2	3	0.75	30	0.72	0.5	0.88
ACC	54%	64%	81%	81%	82%	80%	81%	77%	73%	78%	42%	69%	68%	68%	69%	60%	73%	60%	74%	64%	64%	63%

11 65 433 is a top young sire. Excellent birth to growth spread. Top 1% DC top 2% \$A & \$GS. Top 3% \$D, Top 5% \$GN. Used as a yearling and suitable for use over heifers Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

70 82 34 45 50 50 45 89 30 5

1 83

3 11

93

30

16

6

Lot 4										Socie	ty ID:	VK	22	325
Gene Status AM NH CA FU FU FU	DD	Sire	BARWI			IAL		Dai	m B	BARWIDGE	IDGEE 12: E 14132 IDGEE 12:			
Born	Birth Wt	F⊕H	F	5	Ø	SHEATH	TEMP	Ü		\$ INDEX	\$A \$260	\$D \$228	\$GN \$323	\$GS \$248
26/08/2022	36 kg	6 5	6 6	5	6	4	2	42		Percentile	5	2	11	4
TACE CALVI	NG EASE	 			FERTILI	TY		ARCAS			FEED TE		Structi	ıral

TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT RIB **RBY** IMF DOC Angle claw EMA P8 NFI-F LEG **EBV** 2.9 48 12 2.6 -8.3 59 10.8 2.2 1.3 2.1 1.08 0.74 0.92 111 0.46-6 63% 80% 77% 77% 59% ACC 53% 81% 82% 80% 80% 73% 41% 68% 67% 68% 69% 72% 58% 75% 67% 67% 64% 32 5 26 45 26 55 68 62 85 2 76 10 23 20 52 75 99 75 28 Perc 65 11 19

325 is a lovely thick well put together young bull. Excellent data, especially for fertility related traits. Top 2% DC & \$D index. Top 4% \$A & \$GS. Used as a yearling. Ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

_ot

Gene Status RENNYLEA L211(APR)(ET) RENNYLEA M1000 AM NH CA DD Sire RENNYLEA P1377 Dam BARWIDGEE 18668 **BARWIDGEE 12334** RENNYI FA M600 FU FU FU FU \$A \$GS SHEATH \$D \$GN Birth Wt Born \$237 \$189 \$321 \$227 \$ INDEX 28/08/2022 6 38 42 kg 6 6 6 5 5 4 15 23 13 Percentile **CALVING EASE GROWTH And MATERNAL CARCASE** FEED TEMP Structural .IFERTILITY TACF CWT EMA TRAIT DTRS DIR GL RW G200 G400 G600 MWT MILK SS DC RIB P8 **RBY** IMF NFI-F DOC Angle claw **IFG FBV** -2.5 -5.9 3.1 44 93 121 108 14 0.9 66 7.2 4.5 -0.3 5.1 0.63 13 0 82 0.7 1.06 ACC 54% 64% 82% 82% 83% 81% 81% 78% 74% 79% 43% 69% 69% 69% 70% 61% 73% 60% 76% 67% 67% 64% Perc 50 35 78 5 79 48 45 39 70 88 22 55 39 2 3 87 4 87 79 17 21 60 337 is another P1377 son with excellent birth to growth spread in his data. Very positive fat, high IMF. He is an easy doing thick bull with good structure and a quiet nature. Good for all indexes. Used as a yearling. Ideal for use over heifers. Please note this bull does have some white in the groin area. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics VKD 22 543 _ot Society ID: **Gene Status RENNYLEA L519 BARWIDGEE 14145** AM NH CA DD Sire BARWIDGEE 20257 Dam BARWIDGEE 17339 BARWIDGEE 07243 BARWIDGEE 17257 FU FU FU FU \$GN \$GS SHEATH \$A \$D Born Birth Wt TEN \$266 \$239 \$342 \$251 \$ INDEX 6 12/09/2022 40 kg 6 5 6 5 6 4 2 38 Percentile 3 4 TEMP **CALVING EASE** GROWTH And MATERNAL FERTILITY CARCASE **FEED** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 **RBY** IMF NFI-F DOC Angle claw LEG -1.5 -3.7 89 0.24 **FBV** 5.7 4.5 106 18 0.5 -8.8 67 10.8 1.1 3.7 16 0.76 0.64 0.9 65% 82% 81% 83% 81% 81% 78% 74% 79% 45% 70% 69% 69% 70% 61% 74% 61% 79 61 62 68 43 77 70 38 94 2 50 10 27 17 53 70 9 44 16 13 15 Perc 543 is a super thick really well put together bull. Top 2% DC. Top 1% \$D, Top 3% \$A & \$GS, Top 4% \$GN. Used as a yearling. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics VKD 22 237 _ot Society ID: **Gene Status BARWIDGEE 14145** RENNYLEA M1000 AM NH CA DD Sire RENNYLEA P1377 Dam BARWIDGEE 19119 **RENNYLEA M600** BARWIDGFF 14182 FU FU FU \$A \$D \$GN \$GS SHEATH **Born** Birth Wt F(T)H \$288 \$247 \$359 \$280 \$ INDEX 6 6 6 6 5 5 4 40 20/08/2022 39 ka Percentile 1 1 **FEED** TEMP **CALVING EASE** GROWTH And MATERNAL FERTILITY **CARCASE** Structural TACE CWT TRAIT DTRS DIR GL G200 G400 G600 MWT MILK DC EMA P8 IMF Angle claw LEG BW SS **RIB RBY** NFI-F DOC **EBV** 49 139 108 1.2 0.9 1.22 0.96 7.5 4.4 -1.9 3.6 107 25 -8.9 89 8.9 0.50.1 3.6 -0.11 34 1.1 70% ACC 54% 65% 83% 82% 83% 81% 81% 79% 74% 79% 44% 70% 70% 71% 62% 74% 61% 77% 66% 66% 65% 6 23 72 58 12 14 40 81 6 37 42 24 19 18 9 93 237 is a really good young sire. Excellent structure, temperament and outstanding numbers. Top 1% for DC, \$A, \$D & \$GS, top 2%\$GN. Used as a yearling, suitable for use over heifers. Please note this bull does have some white in the groin area. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics VKD 22 269 Society ID: Lot -8 **Gene Status** ALLOURA GET CRACKING G10 RENNYLEA EDMUND E11(AI)(ET AM NH CA DD Sire BARWIDGEE 18339 Dam BARWIDGEE 15279 FU FU FU BARWIDGEE 16548 **BARWIDGEE 13105** \$A \$D \$GN \$GS SHEATH Born Birth Wt ŒН TEM \$ INDEX \$257 \$198 \$349 \$250 21/08/2022 6 6 5 6 5 5 4 2 40 35 kg Percentile **GROWTH And MATERNAL CARCASE FEED** TEMP Structural CAI VING FASE FFRTII ITY TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT **EMA RIB P8 RBY** IMF NFI-F DOC Angle claw LEG **EBV** 2 2.2 2.1 33 82 27 2.5 -7.4 14.9 3.5 0.5 5.9 0.78 0.58 0.86 63 42 4.1 0.64 ACC 81% 45% 56% 65% 82% 82% 81% 81% 79% 75% 78% 70% 70% 70% 71% 62% 74% 62% 76% 67% 67% 66% 20 54 99 98 98 36 6 96 9 Perc 14 99 99 3 94 1 3 4 47 2 88 11 7 269 is a serious carcass bull, thick and soft with the data to match the phenotype. Top 1% EMA, Top 2% IMF, Top 3% Milk Top 5% \$D, \$GN, \$GS. Used as a yearling. Ideal for use over heifers Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Society ID:

VKD 22 337

.ot Society ID: VKD 22 263 Gene Status BARWIDGEE 18171 RENNYLEA M1000 AM NH CA DD Sire RENNYLEA P1377 Dam BARWIDGEE 20448 **RENNYLEA M600** BARWIDGEE 18660 FU FU FU FU \$GS \$GN SHEATH \$A \$D Birth Wt Born 7 福 \$209 \$240 \$249 \$312 \$ INDEX 6 6 4 2 42 21/08/2022 33 kg 6 6 5 6 9 Percentile 8 16 **CALVING EASE GROWTH And MATERNAL CARCASE FEED** TEMP Structural FERTILITY TACE TRAIT DTRS DIR GL RW G200 G400 G600 MWT MILK SS DC CWT EMA **RIB** P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 3.5 8.2 -4.3 2.2 41 85 111 97 20 2.9 -7.465 14.2 0 -0.9 1.6 0.63 15 1.02 0.36 1.14 82% ACC 51% 63% 81% 82% 80% 80% 77% 72% 78% 40% 69% 68% 68% 69% 60% 73% 60% 75% 66% 66% 64% Perc 6 51 16 89 71 68 58 28 24 6 58 2 49 60 5 21 87 73 62 81 263 is a first calf from a 2yo heifer. Excellent calving ease, low birthweight high indexing bull of outstanding carcass merit. Top 2% EMA. Top 10% \$A, \$D & \$GS. Used as a yearling. Ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics VKD 22 45 ₋ot 10 Society ID: Gene Status **RENNYLEA L519** RENNYLEA EDMUND E11(AI)(ET AM NH CA DD Sire BARWIDGEE 20257 **Dam** BARWIDGEE 15155 **BARWIDGEE 17257 BARWIDGEE 13247** FU FU FU FU SHEATH \$D \$GN \$GS Born Birth Wt TEM \$ INDEX \$248 \$205 \$336 \$236 5/09/2022 42 kg 6 6 6 6 5 4 2 43 Percentile 8 FEED TEMP **CALVING EASE GROWTH And MATERNAL** FERTILITY **CARCASE** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 7.8 1.02 0.94 -5.2 76 90 53 1.8 -7.454 7.3 2.6 1.7 -0.5 5.5 0.87 0.84 6.7 1.7 41 17 17 ACC 57% 66% 82% 81% 83% 81% 81% 78% 74% 79% 46% 70% 70% 69% 71% 61% 74% 62% 75% 66% 65% 65% 37 62 86 92 3 96 62 49 23 Perc 8 10 89 89 94 98 50 6 38 8 18 65 14 457 is out of an excellent well performed Edmund daughter. Easy doing positive fat bull. Top 10% all indexes. Low birthweight, high calving ease sire. Used as a yearling, ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Lot 11							Socie	ety ID:	VKC	22	169
Gene Status	•	LA	AWSONS MOM	MENTOUS M518			EF CC	MPLEME	NT 8088		
AM NH CA DD	1	Sire MURDE	DUKE QUA	RTERBACK	Q011	Dam	BARWIDGE	E 17109	9		
FU FU FU FU		M	URDEDUKE BA	ARUNAH N026			BARW	/IDGEE 15	5263		
Born Bir	th Wt	5 }] [5- 1	SHEATH	30) (\$A	\$D	\$GN	\$GS
BOIII BII	III VVI	FDH F&H	80 1	M -sc	TEMP	\Box	\$ INDEX	\$254	\$210	\$341	\$242
16/08/2022 4	3 kg	7 6 7 6	5	5 4	1	45	Percentile	7	7	5	6
TACE CALVING	EASE GRO	WTH And MATE	RNAL FER	RTILITY	C	CARCASE		FEED T	ЕМР	Structu	ıral
TRAIT DTRS DIR C	L BW G200	G400 G600 MW	T MILK SS	DC CW	T EMA F	RIB P8	RBY IMF	NFI-F I	DOC Ang	le claw	LEG
EBV -1.8 -4.7 -5	5.5 7 65	123 157 132	21 2.8	3 -4.8 95	11.7	0.2 0.9	0.6 2.9	0.12	29 1.1	0.62	1

47% Perc 91 32 96 5 2 3 12 23 27 45 3 44 29 41 32 39 17 79 11 40 Very high growth Quarterback son. Top 2% 400 day top 10% all \$ indexes. A lovely quiet bull out of a very good Complement daughter. Used as a yearling. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

71%

71%

70%

1.9

70%

14

0.8

71%

30

0.1

61%

71

74%

5

71%

62%

75%

63%

0.34

61%

64

14

76%

75

67%

58

77%

72%

72%

0.56

66%

6

1.02

64%

47

70%

ACC

EBV

ACC

Perc

7.6

53%

8.6 -7.4

64% 83%

5 12 0.7

82%

41

83%

88

60%

68% 83%

82%

83%

81%

83

81%

76

101

81%

85

58

79%

96

23

74%

11

1.9

79%

58

81%

79%

74%

79%

Lot 12													Socie	ety ID:	VKI	22	151
Gene Status AM NH CA FU FU FU		Siı	re RE	NNYL	NNYLEA EA P13 NNYLEA	377					Dar	n BAR	WIDGE	/IDGEE 1 E 1724 9 /IDGEE 1)		
Born 14/08/2022	Birth Wt	F 7	H F2	H 6	√ 5	5) s	HEATH 4	TEN 1	_{/IP} (ارا 10		NDEX rcentile	\$A \$251	\$D \$206	\$GN \$336	\$GS \$238
	NG EASE	 			RNAL		ILITY DC	CWT	ЕМА	CAR	CASI P8			FEED		Structu	

17 151 is a very low birth weight P1377 son. P1377 has bred very well for us. Top 5% IMF and top 10% all indexes. Positive fat very quiet bull. Ideal for use over heifers. Used as a yearling Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

-6.2

42%

50

70%

91

8.4

70%

27

ACC

FBV

ACC

Perc

FU

-0.3

58%

80

FU FU FU

FU FU

FU

4.5

68% 83%

30 6

-8.5

Perc

53%

27

64% 82%

64 16 81%

34

2.3

82%

17

41

83%

89

82%

65

80%

70

81%

72

109

82%

72

64

79%

93

78

81%

86

77%

98

72%

5

78%

50

-0.1

80%

98

TE MANIA BARUNAH L537

.ot Society ID: **VKD 22 Gene Status BARWIDGEE 16139** TE MANIA KIRBY K138 AM NH CA DD Sire TE MANIA QARARA Q514 SV Dam BARWIDGEE 19255 BARWIDGEE 17345 TE MANIA BARUNAH I 537 FU FU FU FU \$GS SHEATH \$A \$D \$GN Birth Wt Born \$258 \$268 \$360 \$ INDEX \$215 13/08/2022 6 31 kg 6 5 5 6 4 39 3 Percentile 6 **CALVING EASE** GROWTH And MATERNAL FERTILITY FEED TEMF Structural CARCASE TACE TRAIT DTRS DIR GL RW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 **RBY** IMF NFI-F DOC Angle claw **IFG FBV** 1.5 5.2 0.8 -6.9 3.3 48 85 109 50 25 2.1 -8.1 70 8 0.8 -0 4 5.1 1.18 34 0.96 0.821.14

3 135 is a very high indexing Q514 son. Used as a yearling he is top 2% for \$G & \$GS. Top 5% for other indexes. Short DTC and High IMF and milk bull. Suitable for use over heifers. Used as a yearling. Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

41%

69%

42

68%

31

4.3

71%

74

71%

2

68%

19

69%

30

5.7

72%

1

62%

98

60%

89

73%

4

5.2

75%

4

0.33

63%

63

59%

99

77%

9

31

77%

14

1.2

74%

92

1.22

74%

98

1.02

67%

47

8

68%

47

68%

45

67%

81

₋ot 14 Society ID: **Gene Status** LAWSONS MOMENTOUS M518 BARWIDGEE 15310 AM NH CA DD Sire MURDEDUKE QUARTERBACK Q011 Dam BARWIDGEE 17153 MURDEDUKE BARUNAH N026 **BARWIDGEE 15495** FU FU FU FU \$A \$D \$GN \$GS SHEATH Born Birth Wt TEN \$ INDEX \$261 \$200 \$345 \$251 14/08/2022 36 kg 6 6 6 5 5 42 Percentile 4 4 FEED TEMP **CALVING EASE** GROWTH And MATERNAL **FERTILIT CARCASE** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT **EMA** RIB P8 RBY IMF NFI-F DOC Angle claw LEG

137 is an excellent Quarterback son. Top 1% DC, very positive for fat. Great choice for breeding easy care low cost of production females. Top 5% GL, IMF. \$A, \$GN, \$GS. Ideal for use over heifers. Traits Observed:

-9.5

45%

1

71

72%

40

GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

24

75%

9

VKD 22 229 .ot 15 Society ID: **Gene Status** LAWSONS LINKEDIN L483 TE MANIA KIRBY K138 AM NH CA DD Sire TE MANIA QARARA Q514 SV Dam BARWIDGEE 18290

SHEATH **Born** Birth Wt 40 kg 5 6 5 5 4 2 47 20/08/2022

BARWIDGEE 15473 \$A \$D \$GN \$GS \$247 \$194 \$235 \$ INDEX \$335

10

18

Percentile

TACE	CAL	VIN	G EA	SE	GRO	WTH /	And N	IATE	RNAL	FERT	ILITY			CAR	CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	6.3	4.1	-4.5	2.9	42	72	92	66	21	2	-7.5	58	10.2	1.1	1.3	-0.1	5.8	0.51	17	0.68	0.56	0.88
ACC	54%	64%	82%	82%	83%	81%	81%	78%	73%	78%	42%	70%	69%	69%	70%	61%	74%	61%	77%	74%	74%	67%
Perc	17	34	48	26	86	94	93	92	23	54	5	77	13	25	23	80	2	80	65	4	6	11

229 is an excellent Q514 son. Top 2% for IMF. Top 5% DC with positive fat. Easy doing bull with top carcass data. Top 6% \$GN index. Top 10% \$GS & \$A. Ideal for use over heifers Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1), Genomics

MURDEDUKE BARUNAH N026

VKD 22 131 16 Society ID: _ot **Gene Status** LAWSONS MOMENTOUS M518 **BOWMONT JACKPOT J310** AM NH CA DD Sire MURDEDUKE QUARTERBACK Q011 Dam BARWIDGEE 18160

Born	Birth Wt	F	Дн	F	γH	5	40	SHEATH	TEMP	Ü
12/08/2022	37 kg	6	6	7	7	5	5	4	1	44

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$247	\$218	\$314	\$233
Percentile	9	5	15	10

BARWIDGEE 16462

TACE															CASE			FEED		Ĭ .	tructur	
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	6.5	7.7	-8	3.2	65	116	147	145	22	4.9	-6.9	95	5.7	-2.3	-3.2	0.8	1.9	0.29	32	1.08	0.64	1.18
ACC	58%	68%	82%	82%	83%	81%	81%	79%	75%	79%	46%	71%	71%	70%	71%	62%	74%	62%	77%	75%	75%	72%
Perc	16	8	8	32	5	4	7	5	18	2	9	3	58	91	90	29	58	59	13	75	13	89

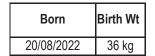
High growth Quarterback son with low birthweight. This bull really bends the growth curve. Top 6% \$A index. Very good for other indexes. Suitable for use over heifers. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1).Genomics

Lot 17 Society ID: VKD 22 235

 Gene Status

 AM NH CA DD

 FU FU FU FU


TE MANIA KIRBY K138

Sire TE MANIA QARARA Q514 SV
TE MANIA BARUNAH L537

BALDRIDGE BEAST MODE B074

Dam BARWIDGEE 19321

BARWIDGEE 14420

F	дн	F_	H 1	1	Ø	SHEATH	TEMP	7.
6	6	6	6	5	5	4	1	43

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$184	\$166	\$225	\$172
Percentile	70	52	81	66

TACE															CASE			FEED			tructur	
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	-4.6	-5.3	-2.1	5.6	58	99	129	140	4	2.6	-7.2	72	6.5	1	0.3	1.1	-0.5	0.36	14	1.04	0.68	1.06
ACC	57%	67%	84%	83%	84%	82%	82%	79%	74%	80%	45%	71%	71%	71%	72%	63%	75%	63%	78%	73%	73%	70%
Perc	96	92	83	82	20	28	29	8	99	32	7	37	48	27	38	16	98	66	75	67	18	60

235 is a really well put together Q514 X Beastmode. Great thickness and structure, excellent temperament. Good growth top 6% DC Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 18 Society ID: VKD 22 357

Gene Status

AM NH CA DD

FU FU FU FU

Birth Wt

38 kg

Born

28/08/2022

RENNYLEA L519

Sire BARWIDGEE 20193

BARWIDGEE 17183

BALDRIDGE BEAST MODE B074 **Dam** BARWIDGEE 19319

BARWIDGEE 15243

F(рн	FΔ	<u>Ы</u>	5	Ø	SHEATH	TEMP	Ü
7	6	6	6	5	6	4	2	41

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$237	\$186	\$316	\$221
Percentile	16	26	14	17

TACE	4.1 -3.4 -1 5				GRO	WTH A	And N	IATEI	RNAL	FERT	ILITY			CAR	CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	4.1	-3.4	-1	5.2	59	95	129	97	18	1.1	-6.1	73	6.5	-0.8	-2	0.3	3.6	-0.17	46	0.8	0.42	0.98
ACC	55%	64%	81%	81%	81%	80%	80%	77%	72%	76%	43%	67%	67%	67%	68%	59%	71%	59%	74%	72%	72%	68%
Perc	39	87	92	76	16	41	29	57	42	84	19	35	48	67	77	59	19	14	1	14	1	34

357 is out of a lovely Beastmode daughter an excellent all round bull that is very good for all indexes. A useful sort Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 19 Society ID: VKD 22 539

Gene Status

AM NH CA DD

FU FU FU FU

TE MANIA KIRBY K138

Sire TE MANIA QLLISTO Q888

TE MANIA LOWAN L534

RENNYLEA L211(APR)(ET)

Dam BARWIDGEE 17411

BARWIDGEE 14160

Born	Birth Wt	FΩ	Н	-{\forall_{\infty}}	1	3	€	SHEATH	FIXTEMP	Ξ
12/09/2022	37 kg	7	6	6 6	3	5	5	4	2	44
	•									

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$264	\$224	\$327	\$256
Percentile	3	3	9	3

TACE	я.									_		и .			CASE			FEED			tructur	
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	8.3	7.1	-2.3	3.6	34	63	80	56	15	2.7	-8.7	37	13.9	-1.5	-2.5	2.1	4.8	1.28	13	0.84	0.78	1
ACC	58%	67%	83%	83%	84%	82%	82%	79%	75%	79%	47%	72%	72%	71%	73%	64%	76%	64%	78%	71%	71%	67%
Perc	5	11	81	41	98	99	98	97	67	29	2	99	2	81	83	1	6	99	80	20	36	40

539 is a really high merit carcass bull. Top 2% EMA, RBY & DC as well as top 6% IMF. Top 4% \$D,\$A & \$GS, Top 10% \$GN. Suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 20 Society ID: VKD 22 247

Gene Status

AM NH CA DD

FU FU FU FU

TE MANIA KIRBY K138

Sire TE MANIA QLLISTO Q888

TE MANIA LOWAN L534

BARWIDGEE 14145

Dam BARWIDGEE 18380

BARWIDGEE 14180

1		Г	ı		1	Ι		-	4	SHEATH		
	Born	Birth Wt		Fζ	рΗ	F.	ŀβ	1	₩	- V	TEMP	Ü
	21/08/2022	39 kg		6	6	6	6	5	5	3	2	40

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$221	\$189	\$277	\$208
Percentile	30	23	41	27

,		CALVING EASE GROWTH And MATE TRS DIR GL BW G200 G400 G600 MWT													CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	9.6	4.5	-3.5	4.3	51	98	129	119	15	1.9	-6.9	78	3.3	1.7	0.7	0	2.3	0.48	19	1.02	0.94	1.08
ACC	55%	64%	83%	81%	82%	80%	81%	77%	73%	77%	45%	69%	69%	69%	70%	61%	73%	61%	76%	74%	73%	70%
Perc	2	30	64	57	47	33	28	24	66	58	9	22	83	16	32	76	47	77	58	62	70	66

Another well put together Q888 son. Top 8% DC. Good growth. Traits Observed:

GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot

21

Gene Status LAWSONS MOMENTOUS M518 RENNYLEA L211(APR)(ET) AM NH CA DD Sire MURDEDUKE QUARTERBACK Q011 Dam BARWIDGEE 17145 MURDEDUKE BARUNAH N026 **BARWIDGEE 14158** FU FU FU FU \$GS SHEATH \$A \$D \$GN Birth Wt Born (T)H \$192 \$138 \$268 \$182 \$ INDEX 43 6 19/08/2022 37 kg 6 6 5 6 4 2 62 82 49 55 Percentile GROWTH And MATERNAL FERTILITY **CARCASE** FEED TEMP Structural **CALVING EASE** TACF TRAIT DTRS DIR GL CWT EMA RW G200 G400 G600 MWT MILK SS RIB P8 **RBY** IMF NFI-F DOC Angle claw **IFG** DC 2.8 2.7 -12 FBV -1.8 3.1 -4.6 41 77 108 86 21 -5.8 62 2.1 2.6 2.5 6 0.82 21 0.961.02 1.12 ACC 60% 69% 83% 82% 83% 82% 82% 79% 75% 80% 47% 72% 71% 71% 72% 63% 75% 64% 78% 76% 76% 73% Perc 88 44 46 24 89 87 72 75 22 29 24 66 91 8 11 99 2 95 46 47 82 77 221 is another good Quarterback son. Positive fat. Ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics VKD 22313 Lot 22 Society ID: **Gene Status** TE MANIA KIRBY K138 **BARWIDGEE 14145** AM NH CA DD Sire TE MANIA QLLISTO Q888 Dam BARWIDGEE 17441 FU FU FU FU TE MANIA LOWAN L534 **BARWIDGEE 11447** \$A \$D \$GN \$GS SHEATH Born Birth Wt TEN \$ INDEX \$195 \$168 \$242 \$182 25/08/2022 42 kg 6 6 6 6 5 5 41 Percentile 59 55 FEED TEMP **CALVING EASE** GROWTH And MATERNAL **FERTILITY** CARCASE Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** -2.8 101 67 1.2 0.44 28 1.02 0.76 1.06 5.1 -3.6 5.2 47 88 115 15 1.6 -7.4 7.7 0.1 0.41.1 ACC 54% 63% 81% 81% 82% 80% 80% 77% 72% 76% 44% 69% 69% 69% 70% 61% 73% 60% 75% 73% 73% 70% 58 68 6 25 42 76 74 22 62 32 60 Perc 28 85 63 76 68 63 52 69 51 34 53 Well put together Q888 son. Top 6% DC. Please note this bull has an old pink eye scar. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics VKD 22315 23 _ot Society ID: **Gene Status** RENNYI FA M1000 RENNYLEA L211(APR)(ET) AM NH CA DD Sire RENNYLEA P1377 Dam BARWIDGEE 18476 FU FU FU **RENNYLEA M600 BARWIDGEE 14148** FU \$A \$D \$GN \$GS SHEATH Born Birth Wt ρ \$ INDEX \$192 \$149 \$251 \$179 6 26/08/2022 42 kg 6 6 5 6 4 44 Percentile 63 72 58 TEMP **CALVING EASE** GROWTH And MATERNAL FERTILITY **CARCASE FEED** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 **RBY** IMF NFI-F DOC Angle claw LEG **EBV** 1.8 1.9 -1.5 3.2 41 79 109 96 18 2 -4.3 61 8.8 -3.6 1.2 4.2 0.02 26 1.14 0.76 0.96 ACC 54% 64% 82% 81% 82% 80% 81% 78% 73% 78% 43% 69% 69% 69% 70% 61% 73% 61% 76% 74% 73% 70% 64 55 88 32 88 84 71 59 45 54 58 69 23 71 93 13 11 29 28 85 32 28 Another very good P1377 son that is suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics VKD 22 401 24 Lot Society ID: Gene Status RENNYLEA M1000 **BARWIDGEE 15124** Sire RENNYLEA P1377 AM NH CA DD Dam BARWIDGEE 18678 BARWIDGEE 15213 **RENNYLEA M600** FU FU FU FU \$A \$D \$GN \$GS SHEATH Birth Wt Born (T)H TEN \$229 \$195 \$288 \$217 \$ INDEX 6 6 6 5 5 3 2 43 2/09/2022 36 kg Percentile 21 17 19 **CALVING EASE GROWTH And MATERNAL FERTILITY CARCASE** FEED TEMP Structural TAGE G200 G400 G600 MWT TRAIT DTRS DIR GL BW MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Anale claw LEG **EBV** 9.3 6.5 -5 44 89 100 18 -5.9 68 3.6 0.31 25 0.98 0.6 1.24 1.5 116 1.6 7.5 -1 -4.6 1.5 63% 81% 82% 81% 73% 78% 69% 70% ACC 52% 81% 80% 78% 41% 69% 69% 60% 73% 59% 75% 72% 72% 68% 15 40 38 22 36 6 9 95 Perc 8 80 60 57 53 69 49 71 97 19 61 30 53 Low birthweight, high yield bull with good growth. Good for all indexes. Ideal for use over heifers Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Society ID:

VKD 22 221

ot 25 Society ID: VKD 22 353 **Gene Status** TE MANIA KIRBY K138 **RENNYLEA C574** AM NH CA DD Sire TE MANIA QLLISTO Q888 Dam BARWIDGEE 15181 BARWIDGEE 09197 TF MANIA I OWAN I 534 FU FU FU FU \$GN \$GS SHEATH \$A \$D Birth Wt Born \$230 \$298 \$218 \$189 \$ INDEX 29/08/2022 6 4 2 42 46 kg 7 6 5 5 21 23 25 19 Percentile **CALVING EASE GROWTH And MATERNAL CARCASE FEED** TEMP Structural FERTILITY TACE TRAIT DTRS DIR GL RW G200 G400 G600 MWT MILK SS DC CWT RIB P8 **RBY** IMF NFI-F DOC Angle claw LEG **EMA FBV** 101 50 -0.3 3.7 1.2 -3.4 5.8 42 79 87 11 1.2 -7.9 6.4 3.4 4.6 4.2 0.2529 0.840.86 1 71% ACC 56% 65% 82% 82% 83% 81% 81% 78% 74% 78% 46% 70% 70% 70% 62% 74% 62% 76% 74% 73% 70% 61 Perc 44 66 85 85 85 85 72 88 81 4 91 49 4 3 87 11 54 18 20 54 40 Positive fat Q888 son that is good for all indexes. Dam is a very well performed Barwidgee cow. Traits Observed:

BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

VKD 22 397 26 Society ID: _ot **Gene Status RENNYLEA L519** BARWIDGEE 10211 AM NH CA DD Dam BARWIDGEE 12588 Sire BARWIDGEE 20257 **BARWIDGEE 17257** BARWIDGEE 10684 FU FU FU FU SHEATH \$D \$GN \$GS Born Birth Wt TEM \$ INDEX \$189 \$159 \$237 \$177 1/09/2022 42 kg 6 6 6 6 5 4 1 43 Percentile 61 73 60 FEED TEMP **CALVING EASE GROWTH And MATERNAL** FERTILITY **CARCASE** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG -3.7 50 92 123 121 -5.9 53 2.3 0.12 0.66 0.88 -5.1 5.5 15 2.8 8 -2.4 -3.41.3 24 0.4 1.4 ACC 56% 65% 82% 82% 83% 81% 82% 79% 75% 79% 46% 70% 69% 70% 71% 62% 74% 61% 75% 71% 70% 60% 47 88 38 54 51 40 23 27 22 86 92 91 10 39 34 3 Perc 68 81 64 31 11 1

397 is out of a wonderful old Barwidgee cow. Lovely quiet nature. Traits Observed:

BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

VKD 22 139 27 Society ID: Lot **Gene Status** TE MANIA KIRBY K138 **BARWIDGEE 15168** Dam BARWIDGEE 17521 AM NH CA DD Sire TE MANIA QLLISTO Q888 FU FU FU FU TE MANIA LOWAN L534 **BARWIDGEE 15525**

Born	Birth Wt	F	Н	{_{F_{2}}}	Ŧ	5	€8	SHEATH	FATEMP	Ξ
14/08/2022	36 kg	7	6	7	6	5	5	4	1	42

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$217	\$180	\$285	\$202
Percentile	34	34	35	32

TACE	CAL	CALVING EASE GROWTH And MATER! TRS DIR GL BW G200 G400 G600 MWT N							RNAL	FERT	ILITY	1.		CAR	CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	5.9	5.8	-7.6	2.1	35	74	91	56	20	1.4	-6.5	60	5.3	4.6	4.8	-0.4	3.5	0.47	33	0.8	0.82	0.86
ACC	53%	63%	81%	81%	82%	80%	80%	77%	72%	76%	43%	69%	68%	68%	69%	60%	73%	60%	75%	72%	72%	69%
Perc	21	20	10	14	97	91	94	97	27	75	14	71	63	1	2	89	21	76	11	14	45	9

139 is a lovely long soft easy doing bull with very positive fat. Lovely guiet bull, ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 28		Societ	ty ID:	VK	22	375								
Gene Status AM NH CA FU FU FU	DD		Sire	BARWII			IAL		Dam	n BARWIDGE	DGEE 10 E 13231 DGEE 05			
Born	Birth Wt		F₩H	F	5	Ø	SHEATH	TEMP	Ü	\$ INDEX	\$A \$242	\$D \$211	\$GN \$312	\$GS \$224
31/08/2022	38 kg		6 6	6 6	5	5	4	1	44	Percentile	12	7	16	15
TACE CALVI	NG EASE	GRO	WTH An	d MATE	RNAL	ERTILI	TY	C	ARCASE	F	EED TE	EMP	Structi	ıral

TACE															CASE	-		FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	ЕМА	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	-1.8	5.1	-1.2	4.2	54	96	116	91	22	3.2	-6.5	71	9.2	0.2	0.5	1	1.5	0.55	5	0.84	0.5	0.9
ACC	54%	64%	81%	81%	82%	80%	81%	77%	73%	78%	43%	69%	68%	68%	69%	60%	72%	58%	75%	73%	72%	67%
Perc	88	25	90	55	36	38	57	67	14	17	14	39	20	44	35	20	69	83	96	20	3	15

375 is out of a wonderful old Barwidgee female. Super balanced EBV's Lovely temperament. Top 8% \$D index. Top 20% other indexes Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot

29

Gene Status RENNYLEA L519 BALDRIDGE BEAST MODE B074 AM NH CA DD Sire BARWIDGEE 20193 Dam BARWIDGEE 19237 BARWIDGEF 17183 **BARWIDGEE 14234** FU FU FU FU \$A \$GS SHEATH \$D \$GN Birth Wt Born \$179 \$315 \$210 \$230 \$ INDEX 6 6/09/2022 36 kg 6 5 4 4 5 4 39 21 35 25 Percentile 15 **CALVING EASE** GROWTH And MATERNAL FERTILITY **CARCASE** FEED TEMP Structural TACE CWT EMA DOC Angle claw TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC RIB P8 **RBY** IMF NFI-F **IFG** -3.4 FBV -0.77.5 -5.2 1.9 45 78 101 55 25 0.1 -3.8 66 11 -2.2 1.2 4.1 0.66 21 0.88 0.62 0.88 ACC 57% 66% 82% 81% 82% 80% 81% 78% 73% 77% 44% 69% 68% 69% 70% 60% 73% 60% 75% 71% 71% 66% 83 9 37 12 77 87 85 97 5 97 70 54 10 90 91 13 12 89 47 28 11 11 Perc Low birthweight, high calving ease young bull with excellent carcass data. Top 9% EMA. Lovely nature. Good for all indexes. Ideal for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics Lot 30 Society ID: **Gene Status** TE MANIA KIRBY K138 MATAURI REALITY 839 AM NH CA DD Sire TE MANIA QLLISTO Q888 **Dam** BARWIDGEE 16134 FU FU FU FU TE MANIA LOWAN L534 **BARWIDGEE 14278** \$A \$D \$GN \$GS SHEATH Born Birth Wt TEN \$ INDEX \$206 \$164 \$286 \$193 29/08/2022 39 kg 6 6 6 6 5 44 Percentile 47 43 FEED TEMP **CALVING EASE** GROWTH And MATERNAL **FERTILITY** CARCASE Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 0.3 68 19 54 0.91 0.9 1.08 4.5 -6 3.1 41 79 97 2.6 -6.15.8 5.5 6.7 -1.3 4.1 15 0.86 ACC 55% 63% 82% 81% 82% 80% 81% 77% 73% 77% 45% 69% 69% 69% 70% 61% 73% 60% 75% 74% 74% 70% 32 19 12 97 74 33 66 Perc 35 68 26 30 89 85 88 91 30 85 57 99 54 1 Very positive fat Q888 X Reality. Lovely quiet nature. Suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics VKD 22 385 ₋ot 31 Society ID: **Gene Status BALDRIDGE 38 SPECIAL** RENNYLEA L211(APR)(ET) AM NH CA DD Sire BARWIDGEE 20339 Dam BARWIDGEE 18366 FU FU FU **BARWIDGEE 16414 BARWIDGEE 14214** FU \$A \$D \$GN \$GS SHEATH Born Birth Wt \$219 \$ INDEX \$169 \$284 \$207 6 1/09/2022 38 kg 6 6 6 5 5 3 41 Percentile 31 28 TEMP **CALVING EASE** GROWTH And MATERNAL FERTILITY **CARCASE FEED** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 **RBY** IMF NFI-F DOC Angle claw LEG **EBV** 2.5 5.4 -0.8 3 51 91 130 104 17 2.4 -5.1 72 6 0.1 0.3 2.9 0.27 20 0.8 0.98 0.92 69% ACC 47% 55% 64% 72% 70% 73% 67% 59% 72% 39% 59% 56% 58% 58% 52% 60% 49% 59% 63% 63% 56% 57 23 93 28 47 53 26 47 48 39 38 38 54 27 42 59 32 56 52 14 76 19 385 is a lovely thick bull with an excellent birth to growth spread. Lovely temperament. Suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) VKD 22 597 32 Lot Society ID: **Gene Status** BARWIDGEE 18179 RENNYLEA K811(APR)(AI) Sire BARWIDGEE 20519 AM NH CA DD Dam BARWIDGEE 18552 **BARWIDGEE 13175** BARWIDGEE 17503 FU FU FU FU \$A \$D \$GN \$GS SHEATH Birth Wt Born ŒН TEN \$211 \$161 \$280 \$199 \$ INDEX 6 6 6 6 5 5 5 2 39 24/09/2022 37 kg Percentile 36 **GROWTH And MATERNAL FERTILITY** CARCASE FEED ГЕМР Structural **CALVING EASE** TAGE G200 G400 G600 MWT TRAIT DTRS DIR GL BW MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **EBV** 4.4 5.4 -3.2 3.1 41 109 79 21 1.7 -4.9 0.9 0.2 0.2 4.4 0.24 22 0.88 0.92 78 55 5.6 0.64 52% 72% 72% 72% 37% ACC 43% 63% 68% 69% 65% 56% 58% 55% 57% 57% 51% 59% 47% 57% 61% 60% 54% 36 23 69 30 86 84 59 Perc 87 71 83 21 65 43 29 40 65 9 53 42 28 13 19 597 has a great shape and well balanced EBV's. High IMF bull that is suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

Society ID:

VKD 22 47

0.94

_ot 33 Society ID: VKD 22 41 Gene Status **BALDRIDGE 38 SPECIAL** ALLOURA GET CRACKING G10 AM NH CA DD **Sire** BARWIDGEE 20183 Dam BARWIDGEE 20232 BARWIDGEE 18118 FU FU FU FU BARWIDGEF 18198 SHEATH \$A \$D \$GN \$GS Birth Wt Born 7 겉 \$219 \$251 \$270 \$367 \$ INDEX 6 5 4 35 2/09/2022 38 kg 6 6 5 6 1 2 Percentile 4 FEED **CALVING EASE GROWTH And MATERNAL CARCASE** TEMP Structural FERTILITY TACE G200 G400 G600 MWT MILK TRAIT DTRS DIR GL RW SS DC CWT **EMA** RIB P8 **RRY** IMF NFI-F DOC Angle claw LEG **FBV** 88 2.7 -0.3 9.5 4.5 -2.2 5.5 68 117 152 134 13 -1.4 -4.5 8.2 2.7 2.6 -0.1235 1.12 0.88 1.06 ACC 58% 67% 83% 82% 83% 81% 81% 79% 74% 78% 43% 70% 70% 69% 71% 60% 74% 63% 78% 71% 70% 66% Perc 30 82 81 3 4 5 11 78 99 53 8 29 7 10 87 39 17 8 82 58 60 First calf from a 2yo heifer. 411 is top 5% for 200,400 & 600 day growth. Moderate birth weight, good structure, temperament and excellent carcass. Top 4% for indexes. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1), Genomics VKD 22 327 34 _ot Society ID: Gene Status **RENNYLEA L519** BARWIDGEE 17248 AM NH CA DD Sire BARWIDGEE 20219 Dam BARWIDGEE 19381 **BARWIDGEE 17125** BARWIDGEE 14566 FU FU FU FU \$GN \$GS SHEATH \$A \$D Birth Wt Born TEM \$231 \$173 \$315 \$216 \$ INDEX 6 6 26/08/2022 40 kg 6 6 5 6 5 1 37 Percentile 20 43 20 **CALVING EASE GROWTH And MATERNAL** FERTILIT CARCASE **FEED** TEMP Structural TACF TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT **EMA** RIB P8 RBY IMF NFI-F DOC Angle claw LEG -0.9 **FBV** -3.1 -1.5 4.9 45 76 105 67 23 -0.3-4.9 64 11.6 -3.1 1.2 5.4 0.3 26 0.92 0.56 0.72 ACC 64% 81% 81% 82% 81% 81% 78% 73% 78% 42% 69% 68% 68% 69% 60% 73% 60% 75% 68% 64% 86 88 70 78 90 79 92 10 99 43 62 7 69 89 13 3 60 27 37 6 Perc 1 327 is a super carcass bull combining both data and phenotype. Top 3% IMF, Top 7% EMA. Good for all \$ indexes Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics Lot 35 VKD 22 115 Society ID: **Gene Status** BARWIDGEE 18123 **BOWMONT KING K306 PV** AM NH CA DD Sire KNOWLA NOBLEMAN N127 Dam BARWIDGEE 20570 BARWIDGFF 18162 FU FU KNOWLA LOWAN K49 FU FU \$A \$GN \$GS SHEATH \$D Birth Wt Born \$224 \$211 \$ INDEX \$177 \$287 6 6 6 6 5 6 4 2 42 10/08/2022 31 kg 27 Percentile 38 33 24 FEEDITEMP Structural **CALVING EASE** GROWTH And MATERNAL FERTILIT' **CARCASE** TACE G200 G400 G600 MWT MILK **EMA** RIB IMF DOC LEG TRAIT DTRS DIR GL BW SS DC CWT P8 **RBY** NFI-F Angle claw **EBV** 5.2 49 100 128 83 10.3 2 1.06 10 141 17 0.5 -4.5 0.7 0.6 -0.01 35 1.18 0.82 68% ACC 53% 63% 82% 81% 82% 80% 80% 77% 72% 78% 40% 69% 68% 69% 60% 73% 59% 75% 73% 73% 70% 26 48 94 53 13 33 20 55 59 12 15 13 33 26 8 60 This young bull really bends the growth curve. High calving ease and low birthweight with very good growth. A 2yo heifers first calf and ideal for use over heifers. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

VKD 22 105 Lot - 36 Society ID: **Gene Status BOWMONT KING K306 PV BARWIDGEE 18133** AM NH CA DD Sire KNOWLA NOBLEMAN N127 Dam BARWIDGEE 20458 FU FU FU FU KNOWLA LOWAN K49 **BARWIDGEE 18638** \$A \$D \$GN \$GS SHEATH Birth Wt Born \$205 TEME \$166 \$265 \$192 \$ INDEX 6 5 6 5 5 4 39 8/08/2022 27 kg 6 1 Percentile 48 52 52 43 **CALVING EASE** GROWTH And MATERNAL FERTILITY **CARCASE** FEED TEMP Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT **EMA** RIB P8 RBY IMF NFI-F DOC Angle claw **LEG**

ACC 54% 64% 82% 81% 82% 81% 81% 78% 73% 78% 41% 69% 69% 69% 70% 61% 73% 60% 76% 69% 72% 72% Perc 23 92 63 54 45 29 91 24 70 34 27 70 53 19 59 18 9 5

-5.8

61

7.7

-1.5

0.4

0.29

29

0.76

0.54

3.6

A 2yo heifers first calf this bull is made for calving ease (top 1%) good growth and an quiet nature. He does have an old pink eye scar. Ideal for heifers. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

EBV

8.5

10.9 - 11.3

-0.7

39

87

105

117

20

0.7

ot

37

Gene Status **BARWIDGEE 16159** LAWSONS MOMENTOUS M518 AM NH CA DD Sire MURDEDUKE QUARTERBACK Q011 Dam BARWIDGEE 18548 MURDEDUKE BARUNAH N026 **BARWIDGFF 16248** FU FU FU FU \$A \$GN \$GS SHEATH \$D Birth Wt Born TEN (TD)H \$263 \$197 \$157 \$184 \$ INDEX 6 42 22/08/2022 36 kg 6 6 6 5 6 5 57 53 Percentile GROWTH And MATERNAL CARCASE FEED TEMP Structural **CALVING EASE** FERTILITY TACF G200 G400 G600 MWT MILK TRAIT DTRS DIR GI RW DC CWT EMA RIB P8 RBY IMF NFI-F DOC **IFG** SS Angle claw 2.7 **FBV** -2.6 -5.6 3.3 3 3.7 47 94 125 21 73 1.3 1.8 -0.53.9 0.3718 1.08 0.7 1.06 83% ACC 54% 62% 75% 72% 73% 75% 70% 64% 75% 43% 63% 62% 64% 64% 57% 66% 55% 66% 66% 66% 61% 91 45 50 43 68 43 37 35 21 29 27 34 83 22 17 92 15 67 60 75 21 60 Perc 267 is a Quarterback son with a very good birth to growth spread. Lovely quiet nature. Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) VKD 22 489 Society ID: _ot -38 **Gene Status BALDRIDGE 38 SPECIAL BARWIDGEE 13146** AM NH CA DD Sire BARWIDGEE 20231 Dam BARWIDGEE 15567 **BARWIDGEE 16526 BARWIDGEE 13185** FU FU FU FU SHEATH \$A \$D \$GN \$GS Born Birth Wt TEM \$ INDEX \$241 \$215 \$297 \$227 7/09/2022 6 6 6 6 5 6 5 2 43 39 ka Percentile 12 FEED TEMP **CALVING EASE** GROWTH And MATERNAL FERTILIT' **CARCASE** Structural TACE G200 G400 G600 MWT MILK TRAIT DTRS DIR GL BW SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 1.3 5.2 48 90 95 20 2.9 -8.1 67 10.6 -0.1 0.27 0.92 -3.1 3.5 -1.1 1.5 1.4 0.58111 ACC 47% 56% 64% 74% 71% 71% 74% 68% 61% 72% 38% 60% 57% 60% 60% 53% 61% 48% 62% 61% 61% 53% 64 70 56 66 61 26 24 50 51 6 56 37 40 Perc 69 38 3 11 63 72 89 489 has no weak points in his data, suitable for use over heifers. He is out of a well performed Barwidgee cow. Top 5% \$D index. Very good for all other indexes. A really useful sort. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) 39 <u>VKD</u> 22 307 .ot Society ID: Gene Status RENNYLEA L211(APR)(ET) **BALDRIDGE BEAST MODE B074** AM NH CA DD Sire BARWIDGEE 19282 Dam BARWIDGEE 17523 BARWIDGEE 15601 BARWIDGEF 14494 FU FU FU FU \$A \$D \$GN \$GS SHEATH Born Birth Wt F(T)H \$202 \$253 \$ INDEX \$171 \$188 6 6 6 6 5 6 5 2 39 25/08/2022 37 ka Percentile 51 45 62 49 FEED TEMP **CALVING EASE** GROWTH And MATERNAL FERTILIT' CARCASE Structural TACE TRAIT DTRS DIR RW G200 G400 G600 MWT MILK RIB IMF DOC GL SS DC CWT **EMA** P8 **RBY** NFI-F Angle claw LEG **EBV** -1.2 1.9 -2 48 112 1.9 0.38 4 84 116 14 -6.4 57 9.3 -0.4 -0.11.5 1.3 14 0.9 0.6 0.9658% ACC 49% 57% 64% 75% 71% 72% 74% 69% 60% 74% 42% 61% 60% 60% 55% 62% 50% 63% 63% 63% 56% 73 66 74 68 76 33 28 84 63 28 75 58 15 80 19 58 45 6 9 307 is a well put together bull, moderate frame high yield bull. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) VKD 22 107 _ot 40 Society ID: Gene Status LAWSONS MOMENTOUS M518 **BALDRIDGE BEAST MODE B074** AM NH CA DD Sire MURDEDUKE QUARTERBACK Q011 Dam BARWIDGEE 19151 FU FU FU FU MURDEDUKE BARUNAH N026 **BARWIDGEE 15557** \$4 \$D \$GN \$GS SHEATH Birth Wt Born Н TEM \$226 \$179 \$317 \$208 \$ INDEX 8/08/2022 26 kg 6 5 6 5 5 5 5 41 Percentile 24 14 27 CAI VING FASE **GROWTH And MATERNAL** FERTILITY **CARCASE** FEED TEMP Structural TACE P8 TRAIT DTRS DIR GL BW G200 G400 G600 MWT MII K SS DC CWT EMA RIB RBY IMF NFI-F DOC LEG Angle claw 5.8 9.3 -9.7 -1.8 22 63 1.9 0.2 0.96 **EBV** 52 2.5 -3.86.8 1.3 4.1 15 0.880.5 1.2 62% ACC 59% 68% 83% 81% 82% 81% 81% 79% 74% 79% 46% 71% 70% 70% 71% 74% 63% 75% 75% 69% 77% Perc 2 79 88 92 98 18 36 70 64 44 22 16 65 12 98 71 28 3 91 Super low birthweight Quarterback son out of a Beastmode daughter. Top 2% for GL. Ideal for use over heifers. Traits Observed:

Society ID:

VKD 22 267

GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

 Lot 41
 Society ID:
 VKD 22 303

 Gene Status
 BARWIDGEE 16139
 RENNYLEA L211(APR)(ET)

Gene Status

AM NH CA DD

FU FU FU FU

Sire BARWIDGEE 20385
BARWIDGEE 18238

Dam BARWIDGEE 18230

BARWIDGEE 10316

Born	Birth Wt
25/08/2022	43 kg

F	Н	F	H	1	Ð	SHEATH	TEMP	Ü
6	6	6	7	5	6	5	2	41

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$222	\$186	\$285	\$206
Percentile	29	27	35	29

TACE	CAL	VIN	G EA	SE	GRO	WTH A	And N	IATE	RNAL	FERT	ILITY			CAR	CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	4.4	3.3	-1.9	5.8	52	89	116	119	11	1.9	-5.7	59	8.4	0.5	0.3	1	2.6	0.41	7	0.92	0.78	1.02
ACC	45%	54%	62%	72%	68%	69%	72%	66%	58%	72%	38%	58%	55%	57%	57%	51%	60%	48%	58%	61%	60%	53%
Perc	36	42	85	85	44	58	57	24	89	58	26	74	27	37	38	20	39	71	93	37	36	47

303 is a thick easy doing bull with well balanced EBV's. Good for all \$ indexes. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

Lot 42 Society ID: VKD 22 369

Gene Status

AM NH CA DD

FU FU FU FU

Birth Wt 36 kg

Born

30/08/2022

BARWIDGEE 18339
Sire BARWIDGEE 20543
BARWIDGEE 18530

RENNYLEA L211(APR)(ET) **Dam** BARWIDGEE 19439

BARWIDGEE 15179

ғ₩н	FΖ	γH	5	Ø	SHEATH	TEMP	Ü
6 6	5	6	5	5	3	1	46

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$220	\$173	\$290	\$213
Percentile	30	43	30	22

		CALVING EASE GROWTH And MATERN FRS DIR GL BW G200 G400 G600 MWT M								_					CASE			FEED	TEMP	S	tructur	al
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	2.6	1.9	-1.1	2.2	36	75	101	81	31	3.4	-9.1	54	8	2.9	2.1	-0.5	5.4	0.46	7	0.96	0.82	1.04
ACC	54%	64%	81%	81%	82%	80%	81%	78%	73%	78%	43%	69%	68%	69%	70%	60%	73%	60%	75%	70%	70%	65%
Perc	56	55	91	16	96	91	85	80	1	13	1	85	31	6	15	92	3	75	94	47	45	53

369 is a lovely thick young bull. Top 1% Milk and DC, top 3% IMF. Ideal for use over heifers. Lovely nature Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 43 Society ID: VKD 22 483

Gene Status

AM NH CA DD

FU FU FU FU

BALDRIDGE BEAST MODE B074

Sire BARWIDGEE 19282

BARWIDGEE 15601

EF COMPLEMENT 8088

Dam BARWIDGEE 17175

BARWIDGEE 13453

Born	Birth Wt	
7/09/2022	43 kg	

F	Дн	F2	 - -	4	8	SHEATH	(TAMP	Ξ
7	6	6	7	6	5	4	2	41

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$237	\$190	\$317	\$220
Percentile	15	22	13	17

	CALVING EASE GROWTH And MATERNAL DTRS DIR GL BW G200 G400 G600 MWT MILK													CASE			FEED	l l	[_	tructur		
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	2.3	-1.1	-3.5	4.1	56	95	125	100	18	0.7	-5.8	71	9.4	1	1.8	0.3	2.6	0.33	18	1.08	0.74	1.02
ACC	50%	58%	67%	74%	71%	71%	74%	68%	61%	73%	41%	61%	58%	61%	61%	55%	62%	51%	63%	64%	63%	57%
Perc	59	77	64	52	25	40	37	53	38	91	24	40	19	27	17	59	39	63	61	75	28	47

483 is out of a very good Complement daughter. Good growth and a very good set of data. A useful bull that is very high for all indexes. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

Lot 44 Society ID: VKD 22 463

Gene Status

AM NH CA DD

FU FU FU FU

BARWIDGEE 18339

Sire BARWIDGEE 20543

BARWIDGEE 18530

RENNYLEA L519

Dam BARWIDGEE 19105

BARWIDGEE 16130

Born	Birth Wt
5/09/2022	37 kg

F₩	ı F	1	5	Ø	SHEATH	TEMP	7.
6 5	6	6	5	5	3	2	39

	\$A	\$D	\$GN	\$GS
\$ INDEX	\$236	\$186	\$317	\$223
Percentile	16	26	13	15

TACE	CAL	CALVING EASE GROWTH And MATERNAL FE DTRS DIR GL BW G200 G400 G600 MWT MILK S						FERT	ILITY			CAR	CASE			FEED	TEMP	S	tructur	al		
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	6.6	2.7	-5.3	3.7	47	89	118	96	24	0.6	-7	70	6.4	2.6	2.6	-0.6	4.6	0.17	26	1	0.8	1.04
ACC	48%	56%	66%	72%	69%	70%	73%	67%	59%	72%	39%	59%	57%	59%	59%	53%	61%	51%	59%	61%	61%	53%
Perc	15	47	35	43	69	59	53	59	8	93	9	42	49	8	11	94	7	45	27	58	41	53

463 is out of a lovely L519 daughter. Positive fat, good birth to growth spread, high milk and top 7% IMF. He has very good index figures and is suitable for a lot of herds. Suitable for use over heifers Traits Observed:

BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

_ot

45

Gene Status **RENNYLEA C511** RENNYLEA L211(APR)(ET) AM NH CA DD Sire BARWIDGEE 17196(ET) Dam BARWIDGEE 12120 **BARWIDGFF 14158** BARWIDGEE 04148 FU FU FU FU \$A \$GN \$GS SHEATH \$D Birth Wt Born (TD)H TEN \$286 \$215 \$227 \$196 \$ INDEX 31/08/2022 6 44 42 kg 6 5 5 5 4 2 24 16 34 21 Percentile **GROWTH And MATERNAL CARCASE** FEED TEMP Structural **CALVING EASE** FERTILITY TACF TRAIT DTRS DIR GL CWT EMA RW G200 G400 G600 MWT MILK DC **RIB** P8 RBY IMF NFI-F DOC Angle claw **IFG** SS 106 1.4 FBV 02 2.5 -0.25 45 85 96 11 3.2 -6.6 60 10.7 n -0.73 0.5 25 0.7 0.64 ACC 47% 55% 60% 75% 72% 73% 75% 70% 61% 75% 42% 62% 58% 61% 60% 56% 59% 48% 62% 65% 65% 49 95 72 78 71 77 58 88 17 12 71 11 49 56 8 30 79 30 5 13 Perc The dam of this bull has been a super well performed cow. High yielding bull with very good EMA. Good indexes Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) VKD 22 389 46 _ot Society ID: **Gene Status** BARWIDGEE 18179 **RENNYLEA L519** AM NH CA DD Sire BARWIDGEE 20519 Dam BARWIDGEE 18236 **BARWIDGEE 13535** FU FU FU FU BARWIDGEE 17503 \$A \$D \$GN \$GS SHEATH Born Birth Wt Н TEM \$ INDEX \$227 \$168 \$309 \$213 31/08/2022 38 kg 6 6 6 5 3 2 38 Percentile 17 22 FEED TEMP **CALVING EASE** GROWTH And MATERNAL **FERTILITY CARCASE** Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 RBY IMF NFI-F DOC Angle claw LEG **FBV** 4.7 5.9 42 79 69 -4.7 61 2.9 -0.431 1.04 0.84 1.02 -3.8 3.2 111 24 0.4 3.5 1.9 5 0.15ACC 49% 58% 70% 73% 72% 71% 74% 69% 63% 73% 39% 61% 60% 61% 62% 54% 65% 52% 64% 61% 60% 54% 85 68 9 95 70 82 89 43 14 67 47 33 19 60 32 83 91 48 14 9 5 49 Perc 389 is a super high IMF bull. Suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) VKD 22 451 ot 47 Society ID: **Gene Status** BALDRIDGE BEAST MODE B074 RENNYLEA EDMUND E11(AI)(ET AM NH CA DD Sire BARWIDGEE 19282 Dam BARWIDGEE 14196 FU FU FU BARWIDGEE 15601 **BARWIDGEE 12148** FU \$Δ \$0 \$GN \$GS SHEATH **Born** Birth Wt \$201 \$219 TEM \$ INDEX \$236 \$300 6 5/09/2022 46 kg 6 6 6 5 5 5 45 Percentile 16 12 17 TEMP **CALVING EASE GROWTH And MATERNAL FERTILITY** CARCASE FEED Structural TACE TRAIT DTRS DIR GL BW G200 G400 G600 MWT MILK SS DC CWT EMA RIB P8 **RBY** IMF NFI-F DOC Angle claw LEG **EBV** -2.4 -0.3 -3.1 4.4 51 85 107 85 14 2.7 -6.5 55 12.8 0.1 0.7 1.7 1.2 0.37 14 0.96 0.52 1.02 ACC 50% 57% 66% 74% 70% 71% 74% 68% 61% 72% 43% 60% 58% 60% 60% 55% 61% 51% 62% 64% 64% 57% 90 72 70 59 50 70 75 75 71 29 14 82 4 46 32 4 76 67 74 47 4 47 451 is a thick bull with top 4 % EMA. High yielding bull who has very good indexes Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1) Society ID: VKD 22 567 48 _ot Gene Status RENNYLEA L211(APR)(ET) BARWIDGEE 14203 Dam BARWIDGEE 16494 AM NH CA DD Sire BARWIDGEE 17196(ET) **BARWIDGEE 14158 BARWIDGEE 14264** FU FU FU FU \$A \$D \$GN \$GS SHEATH Birth Wt Born \$204 ŒН TEM \$237 \$298 \$224 \$ INDEX 6 6 6 6 4 5 4 42 18/09/2022 41 kg Percentile 16 10 14 **GROWTH And MATERNAL** FERTILITY CARCASE FEED TEMP Structural **CALVING EASE** TANF G200 G400 G600 MWT MILK TRAIT DTRS DIR GL BW SS DC CWT **EMA** RIB P8 RBY IMF NFI-F DOC Anale claw LEG **EBV** -1.1 -0.3 48 109 93 9 2.4 -7.2 65 10.9 -1.9 1.4 3 0.28 29 0.8 0.92 1.1 5.4 87 -1.1 0.66 58% 71% 75% 58% 57% ACC 45% 53% 75% 72% 69% 75% 41% 61% 60% 60% 55% 57% 46% 60% 66% 66% 59% 85 62 95 79 72 63 39 59 10 58 19 Perc 65 66 94 73 76 8 30 18 14 16 This young sire is top 10% for EMA and RBY. Very good for his indexes. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

Society ID:

VKD 2237

ot 49 Society ID: VKD 22 587 **Gene Status** BARWIDGEE 14173 **RENNYLEA L519** AM NH CA DD Sire BARWIDGEE 20257 Dam BARWIDGEE 17581 **BARWIDGEE 17257 BARWIDGEE 13195** FU FU FU FU SHEATH \$A \$D \$GN \$GS Born Birth Wt 7 \$231 \$201 \$291 \$217 \$ INDEX 5 4 2 42 22/09/2022 43 kg 6 6 6 5 5 Percentile 20 13 19

TACE	E CALVING EASE GROWTH And MATERNAL IT DTRS DIR GL BW G200 G400 G600 MWT MILK							FERT	ILITY			CAR	CASE			FEED	TEMP	S	tructur	al		
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	4.4	4.2	-4.8	3.9	44	82	101	78	16	2.4	-6.7	51	9.2	-1.1	-2.1	1.3	2.9	0.3	23	0.54	0.42	0.92
ACC	45%	53%	59%	73%	69%	70%	73%	67%	57%	71%	37%	58%	54%	57%	57%	51%	58%	46%	57%	61%	61%	54%
Perc	36	33	43	48	78	78	84	84	56	39	11	90	20	73	79	10	32	60	39	1	1	19

This bull is just good in all areas, a real herd improver. Very good for all indexes and suitable for use over heifers. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

Lot	50																Soci	ety ID:	V	KD	22	387
Gene Status RENNYLEA M1000 RENNYLEA L AM NH CA DD Sire RENNYLEA P1377 FU FU FU F RENNYLEA M600 BARWIDGEE 181 RENNYLEA M600 BARWIDGEE												E 1815	58									
Е	Born Birth Wt						FUH FUH W SHEATH TEMP U \$ INDEX \$23						_		300	\$GS \$222						
1/0	9/2022		41 k	g		6	5 7	6	5	6		4	1	4	14	Per	centile	18	1	6	24	16
TACE	CAL	_VIN	G EA	SE	GRO\	WTH A	And N	IATE	RNAL	FERT	ILITY	1		CAR	CASE			FEED	TEMP	S	tructu	ral
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	5	5.8	-2.8	3.2	40	78	97	80	16	3.3	-5.9	43	10.3	-1.4	-4.3	1.6	5.2	0.61	38	0.84	0.8	0.9
ACC Perc	58% 29	67% 20	83% 75	82% 32	83% 90	82% 87	82% 88	80% 82	75% 60	80% 15	46% 22	71% 96	71% 13	71% 79	72% 96	63% 5	75% 4	63% 86	78% 4	71% 20	71% 41	68% 15

387 is out of a very good L519 daughter. High yielding, high IMF bull. Lovely quiet nature. Suitable for use over heifers Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 51 Society ID: VKD 22 603

Gene Status

AM NH CA DD

FU FU FU FU

TE MANIA KIRBY K138

Sire TE MANIA QLLISTO Q888

TE MANIA LOWAN L534

TUWHARETOA REGENT D145

Dam BARWIDGEE 14212

BARWIDGEE 08414

Born	Birth Wt	F) H	F	γH	5	Ø	SHEATH	TEMP	Ü
26/09/2022	43 kg	7	6	6	6	5	6	4	2	41

	\$A	\$D	\$GN	SGS
\$ INDEX	\$227	\$182	\$307	\$213
Percentile	23	31	19	22

TACE	TACE CALVING EASE					WTH A	And N	IATEI	RNAL	FERT	ILITY			CAR	CASE		FEED	TEMP	S	tructur	al	
TRAIT	DTRS	DIR	GL	BW	G200	G400	G600	MWT	MILK	SS	DC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	DOC	Angle	claw	LEG
EBV	0.7	-1.9	-3.7	4.9	48	85	109	99	14	0.7	-6.8	70	8.6	1.4	1	0.1	4.9	0.62	25	1	0.86	1.08
ACC	50%	57%	68%	74%	71%	71%	74%	68%	62%	72%	44%	61%	60%	62%	62%	56%	63%	53%	63%	65%	65%	59%
Perc	74	81	61	70	62	70	71	54	73	91	10	43	25	20	27	71	5	87	31	58	54	66

Moderate framed bull out of a well performed Regent cow. Top 6% IMF. Very good for all indexes. Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1)

How to Register and Bid on AuctionsPlus

- Go to www.auctionsplus.com.au to register at least 48 hours before the sale.
- Fill in buyer details and once completed go back to Dashboard.
- Select "**Sign Up**" in the top right hand corner.
- Complete buyer induction module (approx. 30 minutes).
- Fill out your name, mobile number, email address and create a password.
- AuctionsPlus will email you to let you know that your account has been approved.
- Go to your emails and confirm the account.
- Log in on sale day and connect to auction.
- Return to AuctionsPlus and log in.
- Bid using the two-step process unlock the bid button and bid at that price.
- Select "Dashboard" and then select "Request Approval to Buy".
- If you are successful, the selling agent will contact you post sale to organise delivery and payment.

For more information please contact us on:

Phone: (02) 9262 4222 Email: info@auctionsplus.com.au

Barwidgee Angus Summary

Γ	===	3	39	40	42	42	38	38	40	40	42	43	45	40	39	42	47	44	43	41	44	40	43	41	44	43	42	43	42	44	39	7.7
Ħ	Ter	mp	-	_		7	_	7	-	7	7	7	-	<u>_</u>	_	_	2	_	_	7	7	7	7	7	_	7	7	_	_	_	_	
Accoccmont	She	ath	က	4	2	4	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	က	4	4	4	က	4	4	4	4	4	
Acco	Œ	=	2	2	9	9	2	9	2	2	9	2	2	2	9	2	2	2	2	9	2	2	9	2	9	2	2	2	2	2	2	Ī
		سي	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	2	2	4	
Structural		3	9 9	9 9	9 9	9 9	9	9 9	9	5 6	9	9 9	9 /	9 /	6	2 9	9 /	7 7	9	9 9	9	9 9	9 9	9 9	9	9 9	9 /	9 9	9 /	9 9	5 4	
	~	~B		2	9	2	9	9	9	9	9	9	9	9	9	9	2	9	9	9	9	9	9	9	9	9	9	9	9	9	9	
F	(0	<u></u>	9	9	9	9	9	9	9	9	9	9	~	7	~	9	7	9	9	_	7	9	7	9	7	7	~	9	7	9	9	_
	\$@\$ 	186	. 257	257	266	248	227	251	280	250	240	, 236	242	238	258	251	235	. 233	172	221	256	208	182	182	179	217	218	177	202	224	210	
\$ INDEX	\$GN	266	347	347	345	323	321	342	359	349	312	336	341	336	360	345	335	314	225	316	327	277	268	242	251	288	298	237	285	312	315	
£	Q\$	167	218	228	226	228	189	239	247	198	209	205	210	206	215	200	194	218	166	186	224	189	138	168	149	195	189	159	180	211	179	
	\$	202	269	270	272	260	237	266	288	257	249	248	254	251	268	261	247	247	184	237	264	221	192	195	192	229	230	189	217	242	230	
	IMF	2.4	2.0	3.3	3.0	2.1	5.1	3.7	3.6	5.9	3.5	5.5	2.9	5.0	5.1	5.2	5.8	1.9	-0.5	3.6	4.8	2.3	0.9	1.2	4.2	3.6	4.2	2.3	3.5	1.5	4.1	
	RBY	0.5	1.	0.3	0.2	1.0	-0.3	<u></u>	0.9	0.5	1.6	-0.5	9.0	0.1	-0.4	-1.0	- 0.1	0.8	<u></u>	0.3	2.1	0.0	-1.2	0.4	1.2	1.5	-0.3	1.3	-0.4	1.0	1.2	
ASE ASE	RUM	-0.3	6.0	0.2	2.5	1.3	4.5	0.0	0.1	4.1	-0.9	1.7	6.0	0.8	0.8	2.7	د .	-3.2	0.3	-2.0	-2.5	0.7	2.5	0.1	-3.6	-4.6	4.6	-3.4	4.8	0.5	-3.4	1
CARCASE	RIB	0.0	0.1	0.1	3.8	2.2	4.1	1.0	0.5	3.5	0.0	5.6	0.2	1.9	1.5	4.0	- -	-2.3	1.0	-0.8	-1.5	1.7	5.6	1.1	-1.0	-1.0	3.4	-2.4	4.6	0.2	-2.2	
	EMA	9.9	15.1	10.1	10.7	8.01	7.2	8.01	6.9	14.9	14.2	7.3	11.7	8.4	8.0	4.3	10.2	5.7	6.5	6.5	13.9	3.3	2.1	7.7	80.00	7.5	6.4	8.0	5.3	9.2	1.0	
	CWT	29	85	. 02	. 22	. 69	99	. 29	89	. 44	. 69	54	95	20	0/	71	. 28	92	72	73	37	28	62	29	61	89	20	53	09	71	. 99	i
Ŀ	O	-4.6	5.7	-8.7	8.0	œ .3	5.9	φ. ∞.	<u>ه</u>	-7.4	-7.4	-7.4	8.4	-6.2	- - -	-9.5	-7.5	6.9	7.2	-6.1	-8.7	6.9	5.8	-7.4	4.3	5.9	6.7.	5.9	6.5	-6.5	က ထ	
FERT	SS	2.2	0.7	2.5	4.2	2.6	6.0	0.5	1.2	2.5	2.9	. 8.	8.	6.1	2.1	-0.1	2.0	. 6.4	2.6	<u>1.</u>	2.7	1.9	2.7	. 9.1	2.0	. 9.1	1.2	2.8	4.	3.2	0.1	
I		17	23 (21	20 4	12	41	18	25	27 2	20	17	21	23 (25	24 -(21	22 4	4	18	15 2	15	21	15	18	18	7	15 2	20 /	22	25 (,
ATERNAI	MW L	01	112	65	72	94	108	89	108	42	26	53	132	28	20	64	99	145	140	26	26	119	98	101	96	100	87	121	26	91	22	0
		118 1	146 1	103	121	111	121	106	139 1	82 ,	11	06	157 1	101	109	109	92	147 1	129 1	129	80	129 1	108	115 1	109	116 1	101	123 1	91	116	101	1
GROWTH And I	400	92 1	108 1	83 1	92 1	90 1	93 1	94 1	107 1	63	85 1	92	123 1	83 1	85 1	78 1	72	116 1	99 1	95 1	63	98 1	77 1	88 1	79 1	89 1	79 1	92 1	74	96 1	78 1	1
WO'A'	200 4	51	56 1	48	51	48	44	47 (49 1	33 (41	14	65 1	41	48	14	42	65 1	58	29	34 (51	14	47	14	44	42	20	35	54	45	
r	≥	3.9	5.0	1.9	3.8	2.9	1.0	4.5	3.6	2.1	2.2	1.7	7.0	0.7	3.3	2.3	2.9	3.2	5.6	5.2	3.6	4.3	2.8	5.2	3.2	1.5	5.8	5.5	2.1	4.2	1.9	_
FASE	<u>P</u>	4	-1.5	-8.6	-5.4	4.7	-2.5	-3.7 4	-1.9	2.2 2	-4.3	-5.2	-5.5 7	-7.4	-6.9	-8.5	-4.5	-8.0	-2.1	-1.0	-2.3	-3.5 4	-4.6	-3.6	-1.5	-5.0	-3.4	-5.1	-7.6	-1.2	-5.2	0
CAI VING EASE	DTR (.8 -4.	7.1	10.8 -	1.1	8.4 -	3.1 -	5.7 -3	7.5 -	6.0 2	5.0	6.7 -	4.	7.6	5.2 -(-0.3	6.3 -4	6.5 -	4.6 -	· 1.4	8.3	9.6	1.8	5.1 -	7.	9.3 -{	3.7	1.4	5.9	8.	-0.7	
Į.	DIR D	.8	0.8 7	7.8 10	-2.2	5.0 8	4.0 3	-1.5 5	4.4 7	2.0 6	8.2 5	7.8 6	-4.7 -1	8.6 7	0.8 5	4.5 -0	4.1 6	7.7	-5.3 4	-3.4 4	7.1 8	4.5 9	3.1 -1	-2.8 5	1.9	6.5 9	1.2 3	-3.7 1	5.8 5	5.1 -1	7.5 -0	
L		7	0	7	-2	2	4	7	4	2	∞	7		00	0		4		ψ	ကု	7	4		4	_	9	_	ကို	2	2	7	(
	SIRE	BREED AVERAGE	BARWIDGEE 20543	TE MANIA QARARA Q514 SV	BARWIDGEE 20257	BARWIDGEE 20231	RENNYLEA P1377	BARWIDGEE 20257	RENNYLEA P1377	BARWIDGEE 18339	RENNYLEA P1377	BARWIDGEE 20257	MURDEDUKE QUARTERBACK Q011	RENNYLEA P1377	TE MANIA QARARA Q514 SV	MURDEDUKE QUARTERBACK Q011	TE MANIA QARARA Q514 SV	MURDEDUKE QUARTERBACK Q011	TE MANIA QARARA Q514 SV	BARWIDGEE 20193	TE MANIA QLLISTO Q888	TE MANIA QLLISTO Q888	MURDEDUKE QUARTERBACK Q011	TE MANIA QLLISTO Q888	RENNYLEA P1377	RENNYLEA P1377	TE MANIA QLLISTO Q888	BARWIDGEE 20257	TE MANIA QLLISTO Q888	BARWIDGEE 20231	BARWIDGEE 20193	SOOO OF CLUMANA TH
	TAG		22461	22129	22433 E	22325 E	22337 F	22543 B	22237 F	22269	22263 F	22457 B	22169	22151	22135	22137	22229	22131	22235	22357 E	22539	22247	2222	22313	22315 F	22401 F	22353	22397	22139	22375	22471 E	
	<u> </u>		ł																													
	LOT		_	2	က	4	2	9	7	∞	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	0

Barwidgee Angus Summary

		$\overline{}$	41	39	35	37	42	39	42	43	39	<u>.</u>	41	46	<u>-</u>	39	44	38	45	42	42	44	<u></u>)
1	Temp		1 4	2 3	3	1	4	3	4	2 4	ς. Ω	4	2	4	2	2 3	4	2 3	4	4	2	4	2 4	
Structural Assessment	<u> </u>	Sheath		2	4	2	4	4	,	2	2	2	2	3	4	3	4	3	5	4	4	4	4	
SSes	-	€€€		2	9	9	9	2	9	9	9	2	9	2	22	2	ر.	2	22	2	22	9	9	
aral A	٧	_	2	2	2	2	2	2	2	2	2	2	2	2	9	2	2	2	2	4	2	2	2	
tructi		לל	9	9	9	9	9	9	9	9	9	2	_	9	_	9	2	7	9	9	9	9	9	
Ś	~_7	7	9 9	9 9	5	9 9	9	5 6	9	9 9	9	5 6	9	6 5	9	5	9	9 9	9	9 9	5	5 7	9	
L	~ >		9	9	9	9	9	9	9	9	9	9	9	9	_	9	_	9	9	9	9	9	_	
	\$GS 186		207	199	251	216	211	192	184	227	188	208	206	213	220	223	215	213	219	224	217	222	213	221
EX	\$GN	266	284	280	367	315	287	265	263	297	253	317	285	290	317	317	286	309	300	298	291	300	307	305
\$ INDEX	\$D	167	169	161	219	173	177	166	157	215	171	179	186	173	190	186	196	168	201	204	201	196	182	192
	\$A	202	219	211	270	231	224	205	197	241	202	226	222	220	237	236	227	227	236	237	231	233	227	234
	IMF	2.4	2.9	4.4	2.6	5.4	2.0	3.6	3.9	4.	6.7	4.1	2.6	5.4	2.6	4.6	3.0	5.0	1.2	3.0	2.9	5.2	4.9	3.5
	RBY	0.5	0.3	0.2	0.3	1.2	0.1	. 4.0	0.5	1.5	1.5	0.2	0.1	0.5	0.3	0.6	4.	0.4	1.7	4.	1.3	1.6	0.1	0.5
SE	RUM P	-0.3	0.1 (0.2 (- 7.5	3.1	, 9.0	1.5 (8.	1.1	0.1	0.1	, 8.	2.1	1.8	2.6	0.7	2.9	, 7.0	1.9	.2.1	, 6.4.	1.0	0.5 (
CARCASE	RIB R	0.0	0.	6.0	.7	0.9	۲.	0.	w ,	-0.1	4.0	wi ,	.5	<u>ග</u>	0.	9	0.	o:	<u></u>	1.	7.	4.	4.	0.
	EMA	9.9	1.0	0 9.	2.2	1.6 -(0.3 0	7.	6.	0.6 -(0.3	8.	0 4.	2 0.	4.	2 4.	0.7	.5	2.8	6.0		0.3 -	1.6	1.6
	CWT	9 29	7.2 6	55 5	88 8	64 1	3	7 7	رن دی	67 10	57 9	63 6	59 8	54 8	1 9	9 0/	60 10	31 3	5 1	65 10	9	3 1	70 8	65 8
)))	9	1 7	<u>ල</u>	75	<u>ල</u>	57	9	9.	_	4	∞.		-9.1	8.	-7.0 7	9	-4.7 6	5.5	2 6	7	9.	œ	9
FERT	S	2 -4.	4 -5.	7 -4	4.	ε. 4	5.	2 - 2	2 -5	9-6	.9	5 -3	.9	6-	7 -5	7- 9:	2 -6.	4- 4-	9- /	4 -7	4 -6	3 -5	7 -6.	9- 6:
_	တ	7 2.	7 2.		7	<u>٩</u>	0.	0.	-2	2.	_	2	<u>-</u>	<u>က</u>	8	0	ص س	0	2.	2	6 2.	6 3.	4 0.	9 1.
MATERNAL	V MILK	1 17	4 17	21	4 13	, 23	11	5 20	7	5 20	6 14	22	9	31	_	24	, ·	24	14	6	_	7	_	_
	MW C	8 101	104	9 79	2 134	5 67	1 128	7 105	5 11	1 95	2 116	. 52	3 119	1 81	5 100	3 96	3 96	1 69	7 85	9 93	1 78	. 80	66 6	3 90
4 And	009	118	130	109	152	105	141	117	125	111	112	94	116	101	125	118	106	111	107	109	101	97	109	113
GROWTH And	400	92	91	78	117	9/	100	87	94	90	84	77	89	75	92	89	85	79	85	87	82	78	85	87
GR	200	51	51	4	89	45	49	39	47	48	48	44	52	36	26	47	45	42	51	48	44	40	48	47
SE	BW	3.9	3.0	3.1	5.5	4.9	1.0	1-0.7	3.7	3.5	4.0	-1.8	5.8	2.2	4.1	3.7	5.0	3.2	4.4	5.4	3.9	3.2	4.9	3.4
IG EA	GL	4.4	-0.8	-3.2	-2.2	-1.5	-13.0	-11.3	4.4	-3.1	-2.0	-9.7	-1.9	<u></u>	-3.5	-5.3	-0.2	-3.8	ئ. 1.	-0.3	4.8	-2.8	-3.7	4.
CALVING EASE	DTR S	2.8	2.5	4.4	9.5	0.1	5.2	8.5	-2.6	1.3	-1.2	5.8	4.4	2.6	2.3	9.9	0.2	4.7	-2.4	<u></u>	4.4	5.0	0.7	3.7
S	DIR	1.8	5.4	5.4	4.5	-3.1	10.0	10.9	3.0	5.2	6.	9.3	3.3	1.9	<u></u>	2.7	2.5	5.9	6.3	1.	4.2	5.8	6.	3.2
	SIRE	BREED AVERAGE	BARWIDGEE 20339	BARWIDGEE 20519	BARWIDGEE 20183	BARWIDGEE 20219	KNOWLA NOBLEMAN N127	KNOWLA NOBLEMAN N127	MURDEDUKE QUARTERBACK Q011	BARWIDGEE 20231	BARWIDGEE 19282	MURDEDUKE QUARTERBACK Q011	BARWIDGEE 20385	BARWIDGEE 20543	BARWIDGEE 19282	BARWIDGEE 20543	BARWIDGEE 17196(ET)	BARWIDGEE 20519	BARWIDGEE 19282	BARWIDGEE 17196(ET)	BARWIDGEE 20257	RENNYLEA P1377	TE MANIA QLLISTO Q888	Averages:
	TAG		22385	22597			22115	22105		22489			22303	22369	22483	22463		22389		22567		22387	22603	
	<u>/</u>		223	225	22411	22327	221	221	22267	224	22307	22107	223	223	224	224	22377	223	22451	225	22587	223	226	
	LOT		31	32	33	34	35	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	21	

Barwidgee

www.barwidgee.com.au

